(1)證明:C1C⊥BD;
(2)假定CD=2,CC1=,記面C1BD為α,面CBD為β,求二面角α—BD—β的平面角的余弦值;
(3)當(dāng)的值為多少時,能使A1C⊥平面C1BD?請給出證明.
(1)證明:設(shè)![]() ![]() ![]() ![]() ∴ ∴C1C⊥BD. (2)解:連AC、BD,設(shè)AC∩BD=O,連OC1,則∠C1OC為二面角α—BD—β的平面角. ∵ ∴ = = 則| (3)解:設(shè) ∵BD⊥平面AA1C1C,∴BD⊥A1C ∴只須求滿足: 設(shè) ∵ ∴
|
科目:高中數(shù)學(xué) 來源: 題型:
OA |
a |
OC |
b |
OO1 |
c |
a |
b |
c |
OG |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com