已知數(shù)列{an}滿足an+1=
(Ⅰ)若方程f(x)=x的解稱為函數(shù)y=f(x)的不動(dòng)點(diǎn),求an+1=f(an)的不動(dòng)點(diǎn)的值;
(Ⅱ)若a1=2,bn=,求證:數(shù)列{lnbn}是等比數(shù)列,并求數(shù)列{bn}的通項(xiàng).
(Ⅲ)當(dāng)任意nÎN*時(shí),求證:b1+b2+b3+…+bn<
由方程an+1=f(an)得an=,
解得an=0,或an=?1,或an="1   " .……2分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等比數(shù)列的前項(xiàng)和為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分16分)
對(duì)于數(shù)列,如果存在一個(gè)正整數(shù),使得對(duì)任意的)都有成立,那么就把這樣一類數(shù)列稱作周期為的周期數(shù)列,的最小值稱作數(shù)列的最小正周期,以下簡(jiǎn)稱周期.例如當(dāng)時(shí)是周期為的周期數(shù)列,當(dāng)時(shí)是周期為的周期數(shù)列.
(1)設(shè)數(shù)列滿足),不同時(shí)為0),求證:數(shù)列是周期為的周期數(shù)列,并求數(shù)列的前2012項(xiàng)的和
(2)設(shè)數(shù)列的前項(xiàng)和為,且.
①若,試判斷數(shù)列是否為周期數(shù)列,并說(shuō)明理由;
②若,試判斷數(shù)列是否為周期數(shù)列,并說(shuō)明理由;
(3)設(shè)數(shù)列滿足),,,數(shù)列的前項(xiàng)和為,試問(wèn)是否存在實(shí)數(shù),使對(duì)任意的都有成立,若存在,求出的取值范圍;不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)是等差數(shù)列,若,則數(shù)列{an}前8項(xiàng)的和為(   )
A.128B.80C.64D.56

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)等比數(shù)列的前項(xiàng)和為,已知N).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)在之間插入n個(gè)數(shù),使這n+2個(gè)數(shù)組成公差為的等差數(shù)列,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

等比數(shù)列{}的前n 項(xiàng)和為,已知,,成等差數(shù)列
(1)求{}的公比q; (2)已知=3,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)等差數(shù)列的前n項(xiàng)和為,若,求的值是( )
A.24B.19 C.36 D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

數(shù)列{an}的首項(xiàng)為3,{bn}為等差數(shù)列且bnan+1an(n∈N*),若b3=-2,b10=12,則a8=(   )
A.0 B.3 C.8 D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在等差數(shù)列等于(   )
A.55B.40C.35D.70

查看答案和解析>>

同步練習(xí)冊(cè)答案