已知平面內(nèi)一動(dòng)點(diǎn)P到點(diǎn)F(1,0)的距離與點(diǎn)P到y(tǒng)軸的距離的差等于1.

(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;

(Ⅱ)過(guò)點(diǎn)F作兩條斜率存在且互相垂直的直線(xiàn)l1,l2,設(shè)l1與軌跡C相交于點(diǎn)A,B,l2與軌跡C相交于點(diǎn)D,E,求的最小值.

 

【答案】

(Ⅰ)當(dāng)x≥0時(shí),y2=4x;當(dāng)x<0時(shí),y=0;(Ⅱ)16.

【解析】

試題分析:(Ⅰ)要求動(dòng)點(diǎn)P的軌跡C,設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(x,y),根據(jù)題意列出關(guān)系式-|x|=1,化簡(jiǎn)得y2=2x+2|x|,式中有絕對(duì)值,需要根據(jù)x討論為當(dāng)x≥0時(shí),y2=4x;當(dāng)x<0時(shí),y=0;(Ⅱ)由題意知,直線(xiàn)l1的斜率存在且不為0,可以設(shè)為k,則l1的方程為y=k(x-1),聯(lián)立得k2x2-(2k2+4)x+k2=0,接著設(shè)A(x1,y1),B(x2,y2),則x1,x2是上述方程的兩個(gè)實(shí)根,于是x1+x2=2+,x1x2=1.而l1⊥l2,則l2的斜率為-,設(shè)D(x3,y3),E(x4,y4),則同理可得x3+x4=2+4k2,x3x4=1,利用坐標(biāo)表示出,化簡(jiǎn)得=8+4(k2)≥8+4×2=16,故當(dāng)且僅當(dāng)k2,即k=±1時(shí),取最小值16.

試題解析:(Ⅰ)設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(x,y),由題意有

-|x|=1,

化簡(jiǎn),得y2=2x+2|x|.

當(dāng)x≥0時(shí),y2=4x;當(dāng)x<0時(shí),y=0.

∴動(dòng)點(diǎn)P的軌跡C的方程為y2=4x(x≥0)和y=0(x<0).

(Ⅱ)由題意知,直線(xiàn)l1的斜率存在且不為0,設(shè)為k,則l1的方程為y=k(x-1).

得k2x2-(2k2+4)x+k2=0.

設(shè)A(x1,y1),B(x2,y2),則x1,x2是上述方程的兩個(gè)實(shí)根,于是

x1+x2=2+,x1x2=1.

∵l1⊥l2,∴l(xiāng)2的斜率為-

設(shè)D(x3,y3),E(x4,y4),則同理可得x3+x4=2+4k2,x3x4=1.

=()·()=····

=||||+||||

=(x1+1)(x2+1)+(x3+1)(x4+1)

=x1x2+(x1+x2)+1+x3x4+(x3+x4)+1

=1+(2+)+1+1+(2+4k2)+1

=8+4(k2)≥8+4×2=16.

當(dāng)且僅當(dāng)k2,即k=±1時(shí),取最小值16.

考點(diǎn):1.曲線(xiàn)的軌跡方程求解;2.直線(xiàn)與圓錐曲線(xiàn)問(wèn)題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面內(nèi)一動(dòng)點(diǎn)P到F(1,0)的距離比點(diǎn)P到y(tǒng)軸的距離大1.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(guò)點(diǎn)F的直線(xiàn)交軌跡C于A,B兩點(diǎn),交直線(xiàn)x=-1于M點(diǎn),且
MA
=λ1
AF
,
MB
=λ2
BF
,求λ12的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面內(nèi)一動(dòng)點(diǎn)P到定點(diǎn)F(2,0)的距離與點(diǎn)P到y(tǒng)軸的距離的差等于2.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)過(guò)點(diǎn)F作傾斜角為60°的直線(xiàn)l與軌跡C交于A(x1,y1),B(x2,y2)(x1<x2)兩點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)M為軌跡C上一點(diǎn),若向量
OM
=
OA
OB
,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•汕頭二模)已知平面內(nèi)一動(dòng)點(diǎn) P到定點(diǎn)F(0,
1
2
)
的距離等于它到定直線(xiàn)y=-
1
2
的距離,又已知點(diǎn) O(0,0),M(0,1).
(1)求動(dòng)點(diǎn) P的軌跡C的方程;
(2)當(dāng)點(diǎn) P(x0,y0)(x0≠0)在(1)中的軌跡C上運(yùn)動(dòng)時(shí),以 M P為直徑作圓,求該圓截直線(xiàn)y=
1
2
所得的弦長(zhǎng);
(3)當(dāng)點(diǎn) P(x0,y0)(x0≠0)在(1)中的軌跡C上運(yùn)動(dòng)時(shí),過(guò)點(diǎn) P作x軸的垂線(xiàn)交x軸于點(diǎn) A,過(guò)點(diǎn) P作(1)中的軌跡C的切線(xiàn)l交x軸于點(diǎn) B,問(wèn):是否總有 P B平分∠A PF?如果有,請(qǐng)給予證明;如果沒(méi)有,請(qǐng)舉出反例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年黑龍江省高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知平面內(nèi)一動(dòng)點(diǎn)P到F(1,0)的距離比點(diǎn)P到軸的距離少1.

(1)求動(dòng)點(diǎn)P的軌跡C的方程;

(2)過(guò)點(diǎn)F的直線(xiàn)交軌跡C于A,B兩點(diǎn),交直線(xiàn)點(diǎn),且

,,

的值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知平面內(nèi)一動(dòng)點(diǎn)P到F(1,0)的距離比點(diǎn)P到y(tǒng)軸的距離大1.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(guò)點(diǎn)F的直線(xiàn)交軌跡C于A,B兩點(diǎn),交直線(xiàn)x=-1于M點(diǎn),且
MA
=λ1
AF
,
MB
=λ2
BF
,求λ12的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案