【題目】如圖,橢圓的離心率為,其左頂點(diǎn)在圓上.

1求橢圓的方程;

2直線與橢圓的另一個(gè)交點(diǎn)為,與圓的另一個(gè)交點(diǎn)為.

當(dāng)時(shí),求直線的斜率;

是否存在直線,使?若存在,求出直線的斜率;若不存在,說明理由.

【答案】121,-1;不存在直線,使得

【解析】

試題分析:1要求橢圓標(biāo)準(zhǔn)方程,就要知道兩個(gè)獨(dú)立條件,橢圓左頂點(diǎn)在圓說明,再由離心率可得,最后由可得2本題考查解析幾何的基本方法,直線與橢圓相交問題與存在性命題,解決方法是設(shè)點(diǎn),顯然直線存在斜率,設(shè)直線的方程為,與橢圓方程聯(lián)立并代入消元得,其中一個(gè)根是-4,另一根設(shè)為易得,再由弦長(zhǎng)公式可求得;圓中的弦長(zhǎng)利用垂徑定理求得,把代入方程,解之,如能解得值,說明存在,如方程無解,說明不存在.

試題解析:1因?yàn)闄E圓的左頂點(diǎn)在圓上,所以,

又離心率為,所以,所以,

所以,所以的方程為.

2)(設(shè)點(diǎn),顯然直線存在斜率,

設(shè)直線的方程為,與橢圓方程聯(lián)立得,

化簡(jiǎn)得到

因?yàn)?4為上面方程的一個(gè)根,所以,

所以,

,

代入得到,解得,所以直線的斜率為1,-1.

圓心到直線的距離為,,

因?yàn)?/span>

代入得到,

顯然,,所以不存在直線,使得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1 , F2為橢圓 的左、右焦點(diǎn),F(xiàn)2在以 為圓心,1為半徑的圓C2上,且|QF1|+|QF2|=2a.

(1)求橢圓C1的方程;
(2)過點(diǎn)P(0,1)的直線l1交橢圓C1于A,B兩點(diǎn),過P與l1垂直的直線l2交圓C2于C,D兩點(diǎn),M為線段CD中點(diǎn),求△MAB面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù), 的圖象在點(diǎn)處的切線與直線平行.

(1)求的值;

(2)若函數(shù),且在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】曲線y=1+ 與直線kx﹣y﹣2k+5=0有兩個(gè)交點(diǎn)時(shí),實(shí)數(shù)k的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,三角形ABC為等腰直角三角形,AC=BC= ,AA1=1,點(diǎn)D是AB的中點(diǎn).
(1)求證:AC1∥平面CDB1;
(2)二面角B1﹣CD﹣B的平面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1,求曲線在點(diǎn)處的切線方程;

2若曲線與直線只有一個(gè)交點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義在D上的函數(shù)y=h(x)在點(diǎn)P(x0 , h(x0))處的切線方程為l:y=g(x),當(dāng)x≠x0時(shí),若 >0在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對(duì)稱點(diǎn)”,則f(x)=x2﹣6x+4lnx的“類對(duì)稱點(diǎn)”的橫坐標(biāo)是( )
A.1
B.
C.e
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)镽,若存在常數(shù)T≠0,使得f(x)=Tf(x+T)對(duì)任意的x∈R成立,則稱函數(shù)f(x)是Ω函數(shù). (Ⅰ)判斷函數(shù)f(x)=x,g(x)=sinπx是否是Ω函數(shù);(只需寫出結(jié)論)
(Ⅱ)說明:請(qǐng)?jiān)冢╥)、(ii)問中選擇一問解答即可,兩問都作答的按選擇(i)計(jì)分
(i)求證:若函數(shù)f(x)是Ω函數(shù),且f(x)是偶函數(shù),則f(x)是周期函數(shù);
(ii)求證:若函數(shù)f(x)是Ω函數(shù),且f(x)是奇函數(shù),則f(x)是周期函數(shù);
(Ⅲ)求證:當(dāng)a>1時(shí),函數(shù)f(x)=ax一定是Ω函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】證明與分析
(1)已知a,b為正實(shí)數(shù).求證: + ≥a+b;
(2)某題字跡有污損,內(nèi)容是“已知|x|≤1, ,用分析法證明|x+y|≤|1+xy|”.試分析污損部分的文字內(nèi)容是什么?并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案