【題目】設(shè)集合M={x|0≤x≤2},N={y|0≤y≤2},給出如下四個(gè)圖形,其中能表示從集合M到集合N的函數(shù)關(guān)系的是(
A.
B.
C.
D.

【答案】D
【解析】解:從集合M到集合能構(gòu)成函數(shù)關(guān)系時(shí),對(duì)于集合M={x|0≤x≤2}中的每一個(gè)x值,在N={y|0≤y≤2}中都有唯一確定的一個(gè)y值與之對(duì)應(yīng). 圖象A不滿足條件,因?yàn)楫?dāng)1<x≤2時(shí),N中沒(méi)有y值與之對(duì)應(yīng).
圖象B不滿足條件,因?yàn)楫?dāng)x=2時(shí),N中沒(méi)有y值與之對(duì)應(yīng).
圖象C不滿足條件,因?yàn)閷?duì)于集合M={x|0<x≤2}中的每一個(gè)x值,在集合N中有2個(gè)y值與之對(duì)應(yīng),不滿足函數(shù)的定義.
只有D中的圖象滿足對(duì)于集合M={x|0≤x≤2}中的每一個(gè)x值,在N={y|0≤y≤2}中都有唯一確定的一個(gè)y值與之對(duì)應(yīng).
故選D.
有函數(shù)的定義,集合M={x|0≤x≤2}中的每一個(gè)x值,在N={y|0≤y≤2}中都有唯一確定的一個(gè)y值與之對(duì)應(yīng),結(jié)合圖象得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)f(x)中,滿足“對(duì)任意x1、x2∈(0,+∞),當(dāng)x1<x2時(shí),都有f(x1)>f(x2)”的是(
A.f(x)=(x﹣1)2
B.f(x)=ex
C.f(x)=
D.f(x)=ln(x+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= sin2x﹣cos2x.
(1)求函數(shù)f(x)的最小正周期和最大值;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=log4(4x+1)+2kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)若方程f(x)=m有解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=loga(x+2)﹣1(a>0,a≠1)的圖象恒過(guò)定點(diǎn)A,若點(diǎn)A在直線mx+ny+1=0上,其中m>0,n>0,則 + 的最小值為(
A.3+2
B.3+2
C.7
D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C的方程:x2+y2﹣2x﹣4y+m=0,其中m<5.
(1)若圓C與直線l:x+2y﹣4=0相交于M,N兩點(diǎn),且|MN|= ,求m的值;
(2)在(1)條件下,是否存在直線l:x﹣2y+c=0,使得圓上有四點(diǎn)到直線l的距離為 ,若存在,求出c的范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C:y2=8x的焦點(diǎn)為F,過(guò)F作傾斜角為60°的直線l.
(1)求直線l的方程;
(2)求直線l被拋物線C所截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}是等差數(shù)列,其中a1=25,a4=16
(1)求{an}的通項(xiàng);
(2)求a1+a3+a5+…+a19值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形垂直于正方形垂直于平面.且

(1)求三棱錐的體積;

(2)求證:面

查看答案和解析>>

同步練習(xí)冊(cè)答案