已知,當時,恒有
的解析式;
的解集為空集,求的范圍。
(1)  (2)

試題分析:解:當時,恒成立,得
,    1分
axbabx對任意恒成立,    2分
a    3分
f(1)=0即,∴ab=1,    4分
    5分
方程    6分
    8分
原方程的解為空集有兩種情況
(1°)方程(1)無實根,解得···10分
(2°)方程(1)有實根,但兩實根都在區(qū)間[-1,0]內(nèi),

 無解    13分
綜上:當時,方程無解。    14分
點評:解決的關(guān)鍵是對于特殊值以及函數(shù)關(guān)系式恒成立來得到參數(shù)a,b的值,同時結(jié)合二次不等式為空集得到參數(shù)m的范圍,屬于中檔題。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)f(x)=的最大值為M,最小值為N,那么M+N= _________ 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

請閱讀下列材料: 已知一系列函數(shù)有如下性質(zhì):
函數(shù)上是減函數(shù),在上是增函數(shù);
函數(shù)上是減函數(shù),在上是增函數(shù);
函數(shù)上是減函數(shù),在上是增函數(shù);
……
利用上述所提供的信息解決問題:
若函數(shù)的值域是,則實數(shù)的值是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),(1)分別求;(2)然后歸納猜想一般性結(jié)論,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=ex+x.對于曲線y=f(x)上橫坐標成等差數(shù)列的三個點A、B、C,給出以下判斷:
①△ABC一定是鈍角三角形;
②△ABC可能是直角三角形;
③△ABC可能是等腰三角形;
④△ABC不可能是等腰三角形.
其中,正確的判斷是(  )
A.①③  B.①④  C.②③  D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的圖象一定過點(  )
A.(1,1)B.(1,2)C.(2,0)D.(2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)若,函數(shù)是R上的奇函數(shù),當,(i)求實數(shù)
的值;(ii)當時,求的解析式;
(2)若方程的兩根中,一根屬于區(qū)間,另一根屬于區(qū)間,求實數(shù)的取 值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點,其中,,則在同一直角坐標系中所確定的不同點的個數(shù)是(    )
A.6B.12C.8D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是(-上的減函數(shù),
那么的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案