【題目】如圖,在四棱錐PABCD中,底面ABCD是正方形,ACBD交于點(diǎn)O,PC⊥底面ABCD, 點(diǎn)E為側(cè)棱PB的中點(diǎn).

求證:(1) PD∥平面ACE

(2) 平面PAC⊥平面PBD

【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析。

【解析】

(1)連接OE.易證PD∥OE,根據(jù)線面平行判定定理得證;

(2)要證平面PAC⊥平面PBD,即證BD⊥平面PAC

(1) 連接OE

因?yàn)?/span>O為正方形ABCD的對(duì)角線的交點(diǎn),

所以OBD中點(diǎn).

因?yàn)镋為PB的中點(diǎn),所以PD∥OE.

又因?yàn)镺E面ACE,PD平面ACE,

所以PD∥平面ACE.

(2) 在四棱錐P-ABCD中,

因?yàn)镻C⊥底面ABCD,BD面ABCD,

所以BD⊥PC.

因?yàn)?/span>O為正方形ABCD的對(duì)角線的交點(diǎn),

所以BD⊥AC.

又PC、AC平面PAC,PC∩AC=C,

所以BD⊥平面PAC.

因?yàn)锽D平面PBD,

所以平面PAC⊥平面PBD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) ,且的極值點(diǎn).

(Ⅰ) 的極大值點(diǎn),求的單調(diào)區(qū)間(用表示);

(Ⅱ)恰有1解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若數(shù)列滿足:存在正整數(shù),對(duì)任意的,使得成立,則稱階穩(wěn)增數(shù)列.

1)若由正整數(shù)構(gòu)成的數(shù)列階穩(wěn)增數(shù)列,且對(duì)任意,數(shù)列中恰有個(gè),求的值;

2)設(shè)等比數(shù)列階穩(wěn)增數(shù)列且首項(xiàng)大于,試求該數(shù)列公比的取值范圍;

3)在(1)的條件下,令數(shù)列(其中,常數(shù)為正實(shí)數(shù)),設(shè)為數(shù)列的前項(xiàng)和.若已知數(shù)列極限存在,試求實(shí)數(shù)的取值范圍,并求出該極限值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),函數(shù)的圖象恒不在軸的上方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)fx)=2ax2+2bx,若存在實(shí)數(shù)x0∈(0,t),使得對(duì)任意不為零的實(shí)數(shù)a,b均有fx0)=a+b成立,則t的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的奇函數(shù)

(1)求實(shí)數(shù)的值;

(2)判斷的單調(diào)性,并證明.

(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),且),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.

(1)將曲線的參數(shù)方程化為普通方程,并將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;

(2)求曲線與曲線交點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)為雙曲線的左、右焦點(diǎn),過(guò)作垂直于軸的直線,在軸上方交雙曲線于點(diǎn),且,圓的方程是.

(1)求雙曲線的方程;

(2)過(guò)雙曲線上任意一點(diǎn)作該雙曲線兩條漸近線的垂線,垂足分別為,求的值;

(3)過(guò)圓上任意一點(diǎn)作圓的切線交雙曲線兩點(diǎn), 中點(diǎn)為,

求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是橢圓上的一點(diǎn),、為橢圓的兩焦點(diǎn),若,試求:

1)橢圓的方程;

2的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案