【題目】已知定義在上的可導(dǎo)函數(shù),對于任意實數(shù)都有成立,且當(dāng)時,都有成立,若,則實數(shù)的取值范圍為( )
A.B.C.D.
【答案】A
【解析】
令g(x)=f(x)﹣x2﹣x,可判斷出函數(shù)g(x)為R上偶函數(shù).由f′(x)<2x+1成立,可得g′(x)=f′(x)﹣2x﹣1<0,可得函數(shù)g(x)的單調(diào)性.不等式f(2m)<f(m﹣1)+3m(m+1),即g(2m)<g(m﹣1),因此g(|2m|)<g(|m﹣1|),利用單調(diào)性即可得出.
令g(x)=f(x)﹣x2﹣x,
則g(﹣x)﹣g(x)=f(﹣x)﹣x2+x﹣f(x)+x2+x=0,
∴g(﹣x)=g(x),∴函數(shù)g(x)為R上的偶函數(shù).
∵當(dāng)x∈(﹣∞,0]時,都有f'(x)<2x+1成立,
∴g′(x)=f′(x)﹣2x﹣1<0,
∴函數(shù)g(x)在x∈(﹣∞,0]上單調(diào)遞減,在[0,+∞)上單調(diào)遞增.
f(2m)<f(m﹣1)+3m(m+1),即f(2m)﹣4m2﹣2m<f(m﹣1)﹣(m﹣1)2﹣(m﹣1),
∴g(2m)<g(m﹣1),因此g(|2m|)<g(|m﹣1|),
∴|2m|<|m﹣1|,
化為:3m2+2m﹣1<0,
解得.
故選A.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若關(guān)于x的方程僅有1個實數(shù)根,求實數(shù)的取值范圍;
(2)若是函數(shù)的極大值點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,是函數(shù)(其中常數(shù))圖象上的兩個動點,點,若的最小值為0,則函數(shù)的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列的每相鄰兩項之間插入此兩項的和,形成新的數(shù)列,這樣的操作叫做該數(shù)列的一次拓展.如數(shù)列1,2,經(jīng)過第1次拓展得到數(shù)列1,3,2;經(jīng)過第2次拓展得到數(shù)列1,4,3,5,2;設(shè)數(shù)列a,b,c經(jīng)過第n次拓展后所得數(shù)列的項數(shù)記為,所有項的和記為.
(1)求,,;
(2)若,求n的最小值;
(3)是否存在實數(shù)a,b,c,使得數(shù)列為等比數(shù)列,若存在,求a,b,c滿足的條件;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)小組到進行社會實踐調(diào)查,了解鑫鑫桶裝水經(jīng)營部在為如何定價發(fā)愁。進一步調(diào)研了解到如下信息:該經(jīng)營部每天的房租、人員工資等固定成本為200元,每桶水的進價是5元,銷售單價與日均銷售量的關(guān)系如下表:
銷售單價/元 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
日均銷售量/桶 | 480 | 440 | 400 | 360 | 320 | 280 | 240 |
根據(jù)以上信息,你認(rèn)為該經(jīng)營部定價為多少才能獲得最大利潤?( )
A.每桶8.5元B.每桶9.5元C.每桶10.5元D.每桶11.5元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
(1)若是的兩個不同零點,是否存在實數(shù),使成立?若存在,求的值;若不存在,請說明理由.
(2)設(shè),函數(shù),存在個零點.
(i)求的取值范圍;
(ii)設(shè)分別是這個零點中的最小值與最大值,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線在點處的切線方程;
(Ⅱ)若函數(shù)在區(qū)間上存在極值,求實數(shù)的取值范圍;
(Ⅲ)設(shè),對任意恒有,求實數(shù)的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com