定義在R上的函數(shù)f(x)滿足:對任意的α,β∈R,總有f(α+β)-[f(α)+f(β)]=2011,則下列說法正確的是


  1. A.
    f(x)-1是奇函數(shù)
  2. B.
    f(x)+1是奇函數(shù)
  3. C.
    f(x)+2011是奇函數(shù)
  4. D.
    f(x)-2011是奇函數(shù)
C
分析:先取α=β=0,得f(0)=-2011;再取α=x,β=-x,代入整理可得f(-x)+2011=-[f(x)-f(0)]=[f(x)+2011],即可得到結(jié)論.
解答:取α=β=0,得f(0)=-2011,
取α=x,β=-x,f(0)-f(x)-f(-x)=2011?f(-x)+2011=-[f(x)-f(0)]=[f(x)+2011]
故函數(shù)f(x)+2011是奇函數(shù).
故選:C.
點評:本題主要考查函數(shù)奇偶性的判斷以及抽象函數(shù)的應(yīng)用.解決抽象函數(shù)奇偶性的判斷問題時,一般采用賦值法.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當x∈[0,
π
2
]時,f(x)=sinx,則f(
3
)的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

20、已知定義在R上的函數(shù)f(x)=-2x3+bx2+cx(b,c∈R),函數(shù)F(x)=f(x)-3x2是奇函數(shù),函數(shù)f(x)在x=-1處取極值.
(1)求f(x)的解析式;
(2)討論f(x)在區(qū)間[-3,3]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)滿足:f(x+2)=
1-f(x)1+f(x)
,當x∈(0,4)時,f(x)=x2-1,則f(2010)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值與最小值的差為4,相鄰兩個最低點之間距離為π,函數(shù)y=sin(2x+
π
3
)圖象所有對稱中心都在f(x)圖象的對稱軸上.
(1)求f(x)的表達式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
,
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)的圖象是連續(xù)不斷的,且有如下對應(yīng)值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函數(shù)f(x)一定存在零點的區(qū)間是( 。

查看答案和解析>>

同步練習冊答案