對于函數(shù)y=lg|x-3|和y=sin
πx
2
(-4≤x≤10),下列說法正確的是( 。
(1)函數(shù)y=lg|x-3|的圖象關(guān)于直線x=-3對稱;
(2)y=sin
πx
2
(-4≤x≤10)的圖象關(guān)于直線x=3對稱;
(3)兩函數(shù)的圖象一共有10個(gè)交點(diǎn);
(4)兩函數(shù)圖象的所有交點(diǎn)的橫坐標(biāo)之和等于30;
(5)兩函數(shù)圖象的所有交點(diǎn)的橫坐標(biāo)之和等于24.
A.(1)(2)(3)(5)B.(2)(3)(4)C.(2)(4)D.(2)(3)(5)
在同一坐標(biāo)系中畫出函數(shù)y=lg|x-3|和y=sin
πx
2
(-4≤x≤10)的圖象如下圖所示:

由圖可知:
函數(shù)y=lg|x-3|的圖象關(guān)于直線x=3對稱,故(1)錯(cuò)誤;
當(dāng)x=3時(shí),y=sin
πx
2
取最小值-1,即直線x=3為函數(shù)y=sin
πx
2
的一條對稱軸,又由定義域關(guān)于x=3對稱,故(2)正確;
兩函數(shù)的圖象一共有10個(gè)交點(diǎn),故(3)正確;
且這些交點(diǎn)的平均數(shù)為3,故所有交點(diǎn)的橫坐標(biāo)之和等于30,故(4)正確,(5)錯(cuò)誤
故正確的命題有:(2)(3)(4)
故選B
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列說法正確的是______.
①任一條直線都有傾斜角,也都有斜率;
②直線傾斜角越大,斜率就越大;
③過A(x1,y1)B(x2,y2)(x1≠x2)兩點(diǎn)式直線方程為
y-y1
x-x1
=
y2-y1
x2-x1
;
y-y1
x-x1
=k
是過點(diǎn)(x1,y1)且斜率為k的直線;
⑤平行于x軸直線傾斜角為0°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.函數(shù)f(x)=
x2-x4
|x-2|-2
.給出函數(shù)f(x)下列性質(zhì):(1)f(x)的定義域和值域均為[-1,1];(2)f(x)是奇函數(shù);(3)函數(shù)在定義域上單調(diào)遞增;(4)函數(shù)f(x)有兩零點(diǎn);(5)A、B為函數(shù)f(x)圖象上任意不同兩點(diǎn),則
2
<|AB|≤2
.則函數(shù)f(x)有關(guān)性質(zhì)中正確描述的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出下列四個(gè)命題
①命題“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②若0<a<1,則f(x)=x2+ax-3只有一個(gè)零點(diǎn);
③若lga+lgb=lg(a+b),則a+b的最小值為4;
④對于任意實(shí)數(shù)x,有f(-x)=f(x),且當(dāng)x>0時(shí),f'(x)>0,則當(dāng)x<0時(shí),f'(x)<0.
其中正確的命題有______(填所有正確的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)f(x)=x2+e,(e=2.718…),則下列命題正確的是(  )
A.?a∈(-∞,e),?x∈(0,+∞),f(x)<aB.?a∈(e,+∞),?x∈(0,+∞),f(x)<a
C.?x∈(0,+∞),?a∈(e,+∞),f(x)<aD.?x∈(-∞,0),?a∈(e,+∞),f(x)>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在數(shù)列{an}中,若
an+2-an+1
an+1-an
=k(k
為常數(shù))則稱{an}為“等差比數(shù)列”.下列是對“等差比數(shù)列”的判斷:
①k不可能為0;
②等差數(shù)列一定是等差比數(shù)列;
③等比數(shù)列一定是等差比數(shù)列;
④等差比數(shù)列中可以有無窮多項(xiàng)為0.
其中判斷正確的個(gè)數(shù)為(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知命題p:如果x<1,則x<2;命題q:?x∈R,x2+1=0,則( 。
A.p∨q是假命題B.p是假命題
C.p∧q是假命題D.?q是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

以下命題:①y=x+
1
x
≥2,②若a>0,b>0且a+b=2,則ab≤1,③
x
+
4
x
的最小值為4,④a∈R,a2+1>2a.其中正確的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題正確的個(gè)數(shù)為(  )
①已知-1≤x+y≤1,1≤x-y≤3,則3x-y的范圍是[1,7];
②若不等式2x-1>m(x2-1)對滿足|m|≤2的所有m都成立,則x的范圍是(
7
-1
2
3
+1
2
);
③如果正數(shù)a,b滿足ab=a+b+3,則ab的取值范圍是[8,+∞);
a=log
1
3
2,b=log
1
2
3,c=(
1
3
)0.5
大小關(guān)系是a>b>c.
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案