【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,若a2+c2+ ac=b2 , sinA= .
(1)求sinC的值;
(2)若a=2,求△ABC的面積.
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù) , ,(a>0).若對任意實數(shù)x1 , 都存在正數(shù)x2 , 使得g(x2)=f(x1)成立,則實數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)過點( ,1),且以橢圓短軸的兩個端點和一個焦點為頂點的三角形是等腰直角三角形.
(1)求橢圓的標準方程;
(2)設M(x,y)是橢圓C上的動點,P(p,0)是x軸上的定點,求|MP|的最小值及取最小值時點M的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某加油站20名員工日銷售量的頻率分布直方圖,如圖所示:
(1)補全該頻率分布直方圖在[20,30)的部分,并分別計算日銷售量在 [10,20),[20,30)的員工數(shù);
(2)在日銷量為[10,30)的員工中隨機抽取2人,求這兩名員工日銷量在 [20,30)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是一座橋的截面圖,橋的路面由三段曲線構成,曲線AB和曲線DE分別是頂點在路面A、E的拋物線的一部分,曲線BCD是圓弧,已知它們在接點B、D處的切線相同,若橋的最高點C到水平面的距離H=6米,圓弧的弓高h=1米,圓弧所對的弦長BD=10米.
(1)求弧 所在圓的半徑;
(2)求橋底AE的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,圓C的方程為x2+y2-8x+15=0,若直線y=kx-2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,則k的最大值是____________.
【答案】
【解析】∵圓C的方程可化為(x-4)2+y2=1,∴圓C的圓心為(4,0),半徑為1.由題意知,直線y=kx-2上至少存在一點A(x0,kx0-2),以該點為圓心,1為半徑的圓與圓C有公共點,∴存在x0∈R,使得AC≤1+1成立,即ACmin≤2.
∵ACmin即為點C到直線y=kx-2的距離,
∴≤2,解得0≤k≤.∴k的最大值是.
【題型】填空題
【結束】
15
【題目】在平面直角坐標系中,直線.
(1)若直線與直線平行,求實數(shù)的值;
(2)若, ,點在直線上,已知的中點在軸上,求點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量m (sin ,1), =(1, cos ),函數(shù)f(x)=
(1)求函數(shù)f(x)的最小正周期;
(2)若f(α﹣ )= ,求f(2α+ )的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐 的底面 為正方形, ⊥底面 , 分別是 的中點, .
(Ⅰ)求證 ∥平面 ;
(Ⅱ)求直線 與平面 所成的角;
(Ⅲ)求四棱錐 的外接球的體積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com