(2013•樂山二模)兩座燈塔A和B與海洋觀察站C的距離都等于aKm,燈塔A在觀察站C的北偏東20°,燈塔B在觀察站C的南偏東40°,則燈塔A與燈塔B的距離為
3
a
3
a
km.
分析:根據(jù)題意,算出∠ACB=180°-20°-40°=120°,再由余弦定理并結(jié)合AC=BC=akm,建立關(guān)于AB的方程,解之即可得到AB=
3
akm,從而得到燈塔A與燈塔B的距離.
解答:解:根據(jù)題意,得
△ABC中,∠ACB=180°-20°-40°=120°,
∵AC=BC=akm
∴由余弦定理,得cos120°=
AB2+BC2-AB 2
2AB×BC

即-
1
2
=
a2+a2-AB2
2×a×a
,解之得AB=
3
a
(舍負)
即燈塔A與燈塔B的距離為
3
akm
故答案為:
3
a
點評:本題給出實際應(yīng)用問題,求海洋上燈塔A與燈塔B的距離.著重考查了三角形內(nèi)角和定理和運用余弦定理解三角形等知識,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•樂山二模)函數(shù)f(x)=Asin(ωx+?)(其中A>0,|?|<
π
2
)的圖象如圖所示,為了得到g(x)=sin2x的圖象,則只需將f(x)的圖象( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•樂山二模)已知數(shù)列{an}有a1=a,a2=p(常數(shù)p>0),對任意的正整數(shù)n,Sn=a1+a2+…+an,并有Sn滿足Sn=
n(an-a1)
2

(I)試判斷數(shù)列{an}是否是等差數(shù)列,若是,求其通項公式,若不是,說明理由;
(II)令Pn=
Sn+2
Sn+1
+
Sn+1
Sn+2
Tn是數(shù)列{Pn}
的前n項和,求證:Tn-2n<3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•樂山二模)已知f(x)=-
4+
1
x2
,點Pn(an,-
1
an+1
)
在曲線y=f(x)上(n∈N*)且a1=1,an>0.
(Ⅰ)求證:數(shù)列{
1
a
2
n
}
為等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)數(shù)列{
a
2
n
a
2
n+1
}
的前n項和為Sn,若對于任意的n∈N*,存在正整數(shù)t,使得Snt2-t-
1
2
恒成立,求最小正整數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•樂山二模)如圖,已知拋物線y2=2px(p>0)的焦點F恰好是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點,且兩條曲線交點的連線過點F,則該雙曲線的離心率為(  )

查看答案和解析>>

同步練習冊答案