【題目】如圖,設(shè)橢圓的中心為原點(diǎn)O,長(zhǎng)軸在x軸上,上頂點(diǎn)為A,左右焦點(diǎn)分別為F1 , F2 , 線(xiàn)段OF1 , OF2的中點(diǎn)分別為B1 , B2 , 且△AB1B2是面積為4的直角三角形.

(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(2)過(guò)B1做直線(xiàn)l交橢圓于P,Q兩點(diǎn),使PB2⊥QB2 , 求直線(xiàn)l的方程.

【答案】
(1)解:設(shè)橢圓的方程為 ,F(xiàn)2(c,0)

∵△AB1B2是的直角三角形,|AB1|=AB2|,∴∠B1AB2為直角,從而|OA|=|OB2|,即

∵c2=a2﹣b2,∴a2=5b2,c2=4b2,∴

在△AB1B2中,OA⊥B1B2,∴S= |B1B2||OA|=

∵S=4,∴b2=4,∴a2=5b2=20

∴橢圓標(biāo)準(zhǔn)方程為 ;


(2)解:由(1)知B1(﹣2,0),B2(2,0),由題意,直線(xiàn)PQ的傾斜角不為0,故可設(shè)直線(xiàn)PQ的方程為x=my﹣2

代入橢圓方程,消元可得(m2+5)y2﹣4my﹣16=0①

設(shè)P(x1,y1),Q(x2,y2),

,

,

=

∵PB2⊥QB2,∴

,∴m=±2

所以滿(mǎn)足條件的直線(xiàn)有兩條,其方程分別為x+2y+2=0和x﹣2y+2=0.


【解析】(1)設(shè)橢圓的方程為 ,F(xiàn)2(c,0),利用△AB1B2是的直角三角形,|AB1|=AB2|,可得∠B1AB2為直角,從而 ,利用c2=a2﹣b2 , 可求 ,又S= |B1B2||OA|= =4,故可求橢圓標(biāo)準(zhǔn)方程;(2)由(1)知B1(﹣2,0),B2(2,0),由題意,直線(xiàn)PQ的傾斜角不為0,故可設(shè)直線(xiàn)PQ的方程為x=my﹣2,代入橢圓方程,消元可得(m2+5)y2﹣4my﹣16﹣0,利用韋達(dá)定理及PB2⊥QB2 , 利用 可求m的值,進(jìn)而可求直線(xiàn)l的方程.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí),掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1C1C是邊長(zhǎng)為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.

(1)求證:AA1⊥平面ABC;
(2)求證二面角A1﹣BC1﹣B1的余弦值;
(3)證明:在線(xiàn)段BC1上存在點(diǎn)D,使得AD⊥A1B,并求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)fn(x)=﹣1+x+ + +…+ (x∈R,n∈N+),證明:
(1)對(duì)每個(gè)n∈N+ , 存在唯一的x∈[ ,1],滿(mǎn)足fn(xn)=0;
(2)對(duì)于任意p∈N+ , 由(1)中xn構(gòu)成數(shù)列{xn}滿(mǎn)足0<xn﹣xn+p

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人輪流投籃,每人每次投一球.約定甲先投且先投中者獲勝,一直到有人獲勝或每人都已投球3次時(shí)投籃結(jié)束.設(shè)甲每次投籃投中的概率為 ,乙每次投籃投中的概率為 ,且各次投籃互不影響.
(1)求甲獲勝的概率;
(2)求投籃結(jié)束時(shí)甲的投籃次數(shù)ξ的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1, =9a2a6.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】把函數(shù)y=cos2x+1的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),然后向左平移1個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位長(zhǎng)度,得到的圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老人,結(jié)果如下:

(Ⅰ)估計(jì)該地區(qū)老年人中,需要志愿提供幫助的老年人的比例;

(Ⅱ)能否有99℅的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?

(Ⅲ)根據(jù)(Ⅱ)的結(jié)論,能否提出更好的調(diào)查辦法來(lái)估計(jì)該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說(shuō)明理由。

是否需要志愿者

性別

需要

40

30

不需要

160

270

參考數(shù)據(jù):

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)有小學(xué)150所,中學(xué)75所,大學(xué)25所.先采用分層抽樣的方法從這些學(xué)校中抽取30所學(xué)校對(duì)學(xué)生進(jìn)行視力調(diào)查,應(yīng)從小學(xué)中抽取 18 所學(xué)校,中學(xué)中抽取所學(xué)校.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某公司為鄭州園博園生產(chǎn)某特許商品,該公司年固定成本為10萬(wàn)元,每生產(chǎn)千件需另投入2 .7萬(wàn)元,設(shè)該公司年內(nèi)共生產(chǎn)該特許商品工x千件并全部銷(xiāo)售完;每千件的銷(xiāo)售收入為R(x)萬(wàn)元,

,

(I)寫(xiě)出年利潤(rùn)W(萬(wàn)元〉關(guān)于該特許商品x(千件)的函數(shù)解析式;

〔II〕年產(chǎn)量為多少千件時(shí),該公司在該特許商品的生產(chǎn)中所獲年利潤(rùn)最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案