【題目】如圖,在直三棱柱中,,且

1)求證:平面平面;

2)設(shè)的中點(diǎn),判斷并證明在線段上是否存在點(diǎn),使平面;若存在,求三棱錐的體積.

【答案】1)證明詳見解析;(2.

【解析】試題分析:本題以直三棱柱為幾何背景,考查線線垂直、線面垂直、面面垂直、面面平行、線面平行、三棱錐的體積等基礎(chǔ)知識(shí),考查學(xué)生的空間想象能力、邏輯推理能力、計(jì)算能力.第一問,要證平面平面,需要證平面;第二問,作出輔助線,通過3邊都平行,利用面面平行的判定得到面EFD//平面,再利用面面平行的性質(zhì)得DE//平面,由于平面,所以是三棱錐的高,所以將轉(zhuǎn)化為,再求解.

試題解析:(1直三棱柱側(cè)面為矩形,且,

四邊形為正方形,

,

平面,平面

平面

平面

平面平面; .5

2)分別取,的中點(diǎn),,連接,,

平面平面,平面.8

平面, .10

.12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的個(gè)數(shù)為( )
(1)
(2)已知向量 =(6,2)與 =(﹣3,k)的夾角是鈍角,則k的取值范圍是k<0
(3)若向量 能作為平面內(nèi)所有向量的一組基底
(4)若 ,則 上的投影為
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,已知tanA,tanB是關(guān)于x的方程x2+(x+1)p+1=0的兩個(gè)實(shí)根.
(1)求角C;
(2)求實(shí)數(shù)p的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為偶函數(shù).

(1)求 的值;

(2)若方程 有且只有一個(gè)根,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=f(x)的圖象如圖所示.觀察圖象可知函數(shù)y=f(x)的定義域、值域分別是( 。

A.[﹣5,0]∪[2,6),[0,5]
B.[﹣5,6),[0,+∞)
C.[﹣5,0]∪[2,6),[0,+∞)
D.[﹣5,+∞),[2,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x|,g(x)=lg(ax2﹣4x+1),若對(duì)任意x1∈R,都存在在x2∈R,使f(x1)=g(x2),則實(shí)數(shù)a的取值范圍是(  )
A.(﹣∞,4]
B.(0,4]
C.(﹣4,0]
D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù)、,如果存在實(shí)數(shù)使得,那么稱、的生成函數(shù).

(1) 下面給出兩組函數(shù), 是否分別為、的生成函數(shù)?并說明理由;

第一組: , ,

第二組: , ;

(2) 設(shè) , ,生成函數(shù).若不等式上有解,求實(shí)數(shù)的取值范圍;

(3) 設(shè), ,取,生成函數(shù)圖像的最低點(diǎn)坐標(biāo)為.若對(duì)于任意正實(shí)數(shù),且,試問是否存在最大的常數(shù),使恒成立?如果存在,求出這個(gè)的值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1的離心率為 ,焦距為2,右焦點(diǎn)為F,過點(diǎn)F的直線交橢圓于A、B兩點(diǎn).
(1)求橢圓C的方程;
(2)在x軸上是否存在定點(diǎn)M,使得 為定值?若存在,求出定值和定點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=﹣x2+(3﹣2m)x+2+m(0<m≤1).
(1)若x∈[0,m],證明:f(x)≤ ;
(2)求|f(x)|在[﹣1,1]上的最大值g(m).

查看答案和解析>>

同步練習(xí)冊(cè)答案