【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗(yàn):將200只小鼠隨機(jī)分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過(guò)一段時(shí)間后用某種科學(xué)方法測(cè)算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗(yàn)數(shù)據(jù)分別得到如下直方圖:
記為事件:“乙離子殘留在體內(nèi)的百分比不低于”,根據(jù)直方圖得到的估計(jì)值為.
(1)求乙離子殘留百分比直方圖中的值;
(2)分別估計(jì)甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是菱形,,為等邊三角形,是線段上的一點(diǎn),且平面.
(1)求證:為的中點(diǎn);
(2)若為的中點(diǎn),連接,,,,平面平面,,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)也是橢圓的一個(gè)焦點(diǎn),點(diǎn)在橢圓短軸上,且.
(1)求橢圓的方程;
(2)設(shè)為橢圓上的一個(gè)不在軸上的動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),過(guò)橢圓的右焦點(diǎn)作的平行線,交曲線于兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)記的最大值為,若且,求證:;
(3)若,記集合中的最小元素為,設(shè)函數(shù),求證:是的極小值點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),對(duì)于任意正實(shí)數(shù),不等式恒成立,試判斷實(shí)數(shù)的大小關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司計(jì)劃購(gòu)買(mǎi)1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購(gòu)進(jìn)機(jī)器時(shí),可以額外購(gòu)買(mǎi)這種零件作為備件,每個(gè)200元.在機(jī)器使用期間,如果備件不足再購(gòu)買(mǎi),則每個(gè)500元.現(xiàn)需決策在購(gòu)買(mǎi)機(jī)器時(shí)應(yīng)同時(shí)購(gòu)買(mǎi)幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:
記x表示1臺(tái)機(jī)器在三年使用期內(nèi)需更換的易損零件數(shù),y表示1臺(tái)機(jī)器在購(gòu)買(mǎi)易損零件上所需的費(fèi)用(單位:元), 表示購(gòu)機(jī)的同時(shí)購(gòu)買(mǎi)的易損零件數(shù).
(Ⅰ)若=19,求y與x的函數(shù)解析式;
(Ⅱ)若要求“需更換的易損零件數(shù)不大于”的頻率不小于0.5,求的最小值;
(Ⅲ)假設(shè)這100臺(tái)機(jī)器在購(gòu)機(jī)的同時(shí)每臺(tái)都購(gòu)買(mǎi)19個(gè)易損零件,或每臺(tái)都購(gòu)買(mǎi)20個(gè)易損零件,分別計(jì)算這100臺(tái)機(jī)器在購(gòu)買(mǎi)易損零件上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購(gòu)買(mǎi)1臺(tái)機(jī)器的同時(shí)應(yīng)購(gòu)買(mǎi)19個(gè)還是20個(gè)易損零件?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右頂點(diǎn)為,上頂點(diǎn)為,右焦點(diǎn)為.連接并延長(zhǎng)與橢圓相交于點(diǎn),且
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)經(jīng)過(guò)點(diǎn)的直線與橢圓相交于不同的兩點(diǎn),直線分別與直線相交于點(diǎn),點(diǎn).若的面積是的面積的2倍,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的焦距為4,且過(guò)點(diǎn).
(1)求橢圓的方程
(2)設(shè)橢圓的上頂點(diǎn)為,右焦點(diǎn)為,直線與橢圓交于、兩點(diǎn),問(wèn)是否存在直線,使得為的垂心,若存在,求出直線的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】判斷下列命題的真假.
(1)如果直線平行于直線,則平行于經(jīng)過(guò)的任何一個(gè)平面;
(2)如果一條直線不在平面內(nèi),則這條直線就與這個(gè)平面平行;
(3)過(guò)直線外一點(diǎn),可以作無(wú)數(shù)個(gè)平面與這條直線平行;
(4)如果一條直線與一個(gè)平面平行,則它與該平面內(nèi)的任何直線都平行.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com