精英家教網 > 高中數學 > 題目詳情

【題目】某城市100戶居民的月平均用電量(單位:度),以,, ,,分組的頻率分布直方圖如圖示.

(Ⅰ)求直方圖中的值;

(Ⅱ)求月平均用電量的眾數和中位數;

(Ⅲ)在月平均用電量為,,的三組用戶中,用分層抽樣的方法抽取10戶居民,則月平均用電量在的用戶中應抽取多少戶?

【答案】(Ⅰ)0.0075 (Ⅱ)眾數230,中位數224 (Ⅲ)5戶

【解析】

(Ⅰ)根據頻率和為1,即直方圖中的矩形的面積和為1即可求出x的值;

(Ⅱ)頻率分布直方圖中,最高矩形底邊中點的橫坐標為數據的眾數,由中位數兩邊的頻率相等,可求出中位數;(Ⅲ)求出抽取比例數,計算應抽取的戶數.

(Ⅰ)由直方圖的性質,可得得:,所以直方圖中的值是0.0075

(Ⅱ)月平均用電量的眾數是

因為,

所以月平均用電量的中位數在內,

設中位數為,由

得:,所以月平均用電量的中位數是224.

(Ⅲ)月平均用電量為的用戶有戶,

月平均用電量為的用戶有戶,

月平均用電量為的用戶有戶,

抽取比例,

所以月平均用電量在的用戶中應抽取戶.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某超市在元旦期間開展優(yōu)惠酬賓活動,凡購物滿100元可抽獎一次,滿200元可抽獎兩次依此類推抽獎箱中有7個白球和3個紅球,其中3個紅球上分別標有10元,10元,20元字樣每次抽獎要從抽獎箱中有放回地任摸一個球,若摸到紅球,根據球上標注金額獎勵現金;若摸到白球,沒有任何獎勵

)一次抽獎中,已知摸中了紅球,求獲得20元獎勵的概率;

小明有兩次抽獎機會,用表示他兩次抽獎獲得的現金總額,寫出的分布列與數學期望

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我校為了讓高一學生更有效率地利用周六的時間,在高一新生第一次摸底考試后采取周六到校自主學習,同時由班主任老師值班,家長輪流值班.一個月后進行了第一次月考,高一數學教研組通過系統(tǒng)抽樣抽取了名學生,并統(tǒng)計了他們這兩次數學考試的優(yōu)良人數和非優(yōu)良人數,其中部分統(tǒng)計數據如下:

(1)請畫出這次調查得到的列聯表;并判定能否在犯錯誤概率不超過的前提下認為周六到校自習對提高學生成績有效?

(2)從這組學生摸底考試中數學優(yōu)良成績中和第一次月考的數學非優(yōu)良成績中,按分層抽樣隨機抽取個成績,再從這個成績中隨機抽取個,求這個成績來自同一次考試的概率.

下面是臨界值表供參考:

(參考公式: ,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】雙曲線 的左、右焦點分別為,作傾斜角為的直線與軸和雙曲線的右支分別交于兩點,若點平分線段,則該雙曲線的離心率是

A. B. C. 2 D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數為常數,是自然對數的底數),曲線在點處的切線與軸平行.

)求的值;

)求的單調區(qū)間;

)設,其中的導函數.證明:對任意.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數與函數的圖像關于直線對稱,函數 .

(Ⅰ)若,且關于的方程有且僅有一個解,求實數的值;

(Ⅱ)當時,若關于的不等式上恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,左、右焦點分別為,焦距為6.

(1)求橢圓的方程.

(2)過橢圓左頂點的兩條斜率之積為的直線分別與橢圓交于點.試問直線是否過某定點?若過,求出該點的坐標;若不過,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】據統(tǒng)計,目前微信用戶已達10億,2016年,諸多傳統(tǒng)企業(yè)大佬紛紛嘗試進入微商渠道,讓這個行業(yè)不斷地走向正規(guī)化、規(guī)范化.2017年3月25日,第五屆中國微商博覽會在山東濟南舜耕國際會展中心召開,力爭為中國微商產業(yè)轉型升級,某品牌飲料公司對微商銷售情況進行中期調研,從某地區(qū)隨機抽取6家微商一周的銷售金額(單位:百元)的莖葉圖如圖所示,其中莖為十位數,葉為個位數.

(1)若銷售金額(單位:萬元)不低于平均值的微商定義為優(yōu)秀微商,其余為非優(yōu)秀微商,根據莖葉圖推斷該地區(qū)110家微商中有幾家優(yōu)秀?

(2)從隨機抽取的6家微商中再任取2家舉行消費者回訪調查活動,求恰有1家是優(yōu)秀微商的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業(yè)生產一種產品,根據經驗,其次品率與日產量 (萬件)之間滿足關系, (其中為常數,且,已知每生產1萬件合格的產品以盈利2萬元,但每生產1萬件次品將虧損1萬元(注:次品率=次品數/生產量, 如表示每生產10件產品,有1件次品,其余為合格品).

1)試將生產這種產品每天的盈利額 (萬元)表示為日產量 (萬件)的函數;

2)當日產量為多少時,可獲得最大利潤?

查看答案和解析>>

同步練習冊答案