在數(shù)列{an}中,已知a1=4,an+1=3an-4n+2(n∈N*).
(Ⅰ)記bn=an-2n,試判斷數(shù)列求數(shù)列{bn}是等差數(shù)列還是等比數(shù)列?并證明你的判斷;
(Ⅱ)求數(shù)列{an}的前項和Sn
考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)求出bn=an-2n的表達式,利用等比數(shù)列和等差數(shù)列的定義進行判斷即可;
(Ⅱ)利用分組求和法,進行求解即可.
解答: 解:(Ⅰ)∵a1=4,an+1=3an-4n+2(n∈N*).
∴an+1-2(n+1)=3(an-2n),(n∈N*).
即bn+1=3bn,
則數(shù)列{bn}是等比數(shù)列公比q=3,首項a1-2=4-2=2;
(Ⅱ)∵數(shù)列{bn}是等比數(shù)列公比q=3,首項a1-2=4-2=2;
∴bn=2×3n-1,即an-2n=2×3n-1,
an=2×3n-1+2n,
則數(shù)列{an}的前項和Sn=2(1+3+…+3n-1)+2(1+2+…n)=
1-3n
1-3
+n(n+1)
=3n-1+n(n+1).
點評:本題主要考查等差數(shù)列和等比數(shù)列的判斷,以及利用分組求和法求出數(shù)列的前n項和,考查學生的計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓E:
x2
m2
+
y2
n2
=1過點A(-1,0)和點B(1,0),其中一個焦點與拋物線y=
2
8
x2的焦點重合,C為E上異于頂點的任一點.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若橢圓E所在平面上的兩點M,G同時滿足:①
.
GA
+
.
GB
+
.
GC
=
.
0
;②|
.
MA
|=|
.
MB
|=|
.
MC
|.試問直線MG的斜率是否為定值,若為定值求出該定值;若不為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“幸福感指數(shù)”是指某個人主觀地評價他對自己目前生活狀態(tài)的滿意程度時,給出的區(qū)間內(nèi)的一個數(shù),該數(shù)越接近10表示越滿意,為了解某大城市市民的幸福感,隨機對該城市的男、女各500人市民進行了調(diào)查,調(diào)查數(shù)據(jù)如下表所示:
幸福感指數(shù)[0,2)[2,4)[4,6)[6,8)[8,10)
男市民人數(shù)1020220125125
女市民人數(shù)1010180175125
根據(jù)表格,解答下面的問題:
(Ⅰ)完成頻率分布直方圖,并根據(jù)頻率分布直方圖估算該城市市民幸福感指數(shù)的平均值;(參考數(shù)據(jù):2×1+3×3+40×5+30×7+25×9=646)
(Ⅱ)如果市民幸福感指數(shù)達到6,則認為他幸福.試在犯錯誤概率不超過0.01的前提下能否判定該市市民幸福與否與性別有關?參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k00.100.010.001
k02.7066.63510.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sinωx+cos(ωx+
π
3
)+cos(ω-
π
3
)-1(ω>0,x∈R),且函數(shù)f(x)的最小正周期為π.
(1)求函數(shù)f(x)的解析式并求f(x)的對稱中心;
(2)在△ABC中,角A、B、C所對的邊分別為a、b、c,若f(B)=1,S△ABC=
3
3
4
,且a+c=3+
3
,求邊長b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
e2x
x-1

(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當x≥2時,f′(x)≥af(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=(x-1)lnx,g(x)=x3+(a-1)x2-ax.
(1)求函數(shù)f(x)在[t,t+
1
2
](t>0)上的最小值;
(2)是否存在整數(shù)a,使得對任意x∈[1,+∞),(x+1)f(x)≤g(x)恒成立,若存在,求a的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x4+ax3+bx+c(a,b,c∈R),g(x)=f′(x)且g(0)=g(1).
(Ⅰ)求實數(shù)a的值;
(Ⅱ)若任意x1、x2∈[0,1]且x2>x1,求證:|g(x2)-g(x1)|<8|x2-x1|;
(Ⅲ)當b≤
16
3
9
時,請判斷曲線f(x)的所有切線中,斜率λ為正數(shù)時切線的條數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將三個半徑為3的球兩兩相切地放在水平桌面上,若在這三個球的上方放置一個半徑為1的小球,使得這四個球兩兩相切,則該小球的球心到桌面的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是各項均不為0的等差數(shù)列,Sn為其前n項和,且滿足an2=S2n-1(n∈N+).若不等式
λ
an+1
n+8•(-1)n
n
對任意的n∈N+恒成立,則實數(shù)λ的最大值為
 

查看答案和解析>>

同步練習冊答案