【題目】已知函數(shù),在點(diǎn)處的切線方程為

(1)求的解析式;

(2)求的單調(diào)區(qū)間;

(3)若函數(shù)在定義域內(nèi)恒有成立,求的取值范圍.

【答案】(1);(2) 的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;

(3)

【解析】【試題分析】(1)借助導(dǎo)數(shù)的幾何意義建立方程組求解;(2)先求導(dǎo)再借助導(dǎo)數(shù)與函數(shù)單調(diào)性之間的關(guān)系求解;(3)先將不等式進(jìn)行等價轉(zhuǎn)化,再分離參數(shù)借助導(dǎo)數(shù)知識求其最值,即可得到參數(shù)的范圍。

(1)由題意,得

,∵在點(diǎn)處的切線方程為

∴切線斜率為,則,得

代入方程,得,解得,

,將代入得,

(2)依題意知函數(shù)的定義域是,且

,得,令,得,

的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為

(3)由,得,

在定義域內(nèi)恒成立.

設(shè),則,

,得

,得,令,得

在定義域內(nèi)有極小值,此極小值又為最小值.

的最小值為

所以,即的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個零件,并測量其尺寸(單位:cm).根據(jù)長期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布

(1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個零件中其尺寸在

之外的零件數(shù),求;

(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查.

下面是檢驗(yàn)員在一天內(nèi)抽取的16個零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

經(jīng)計算得 ,其中為抽取的第個零件的尺寸,

用樣本平均數(shù)作為的估計值,用樣本標(biāo)準(zhǔn)差作為的估計值,利用估計值判斷是否需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(精確到0.01).

附:若隨機(jī)變量服從正態(tài)分布,則,

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(不等式選講)

已知函數(shù)

(1)若,解不等式

(2)若不等式在R上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的離心率為,直線 與以原點(diǎn)為圓心、橢圓的短半軸長為半徑的圓相切.

(1)求橢圓的方程;

(2)過橢圓的左頂點(diǎn)作直線,與圓相交于兩點(diǎn), ,若是鈍角三角形,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體ABCDA1B1C1D1中,E,F分別為B1C1,A1D1的中點(diǎn).求證:平面ABB1A1與平面CDFE相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,底面為菱形,且,,、分別為、中點(diǎn).

(1)求點(diǎn)到平面的距離;

(2)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖,其中成績分組區(qū)間如下:

組號

第一組

第二組

第三組

第四組

第五組

分組

[50,60

[6070

[70,80

[80,90

[90,100]

1)求圖中a的值;

2)根據(jù)頻率分布直方圖,估計這100名學(xué)生期中考試數(shù)學(xué)成績的平均分;

3)現(xiàn)用分層抽樣的方法從第34、5組中隨機(jī)抽取6名學(xué)生,將該樣本看成一個總體,從中隨機(jī)抽取2名,求其中恰有1人的分?jǐn)?shù)不低于90分的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,直線的參數(shù)方程為t為參數(shù)),P、Q分別為直線x軸、y軸的交點(diǎn),線段PQ的中點(diǎn)為M

)求直線的直角坐標(biāo)方程;

)以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求點(diǎn)M的極坐標(biāo)和直線OM的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橫、縱坐標(biāo)均為整數(shù)的點(diǎn)叫做格點(diǎn).若函數(shù)圖象恰好經(jīng)過k個格點(diǎn),則稱函數(shù)為k階格點(diǎn)函數(shù).已知函數(shù):

y=sinx; y=cos(x); ③y=ex-1; ④yx2.

其中為一階格點(diǎn)函數(shù)的序號為 (  )

A. ①② B. ②③ C. ①③ D. ②④

查看答案和解析>>

同步練習(xí)冊答案