【題目】如圖,某污水處理廠(chǎng)要在一個(gè)矩形污水處理池的池底水平鋪設(shè)污水凈化管道(,H是直角頂點(diǎn))來(lái)處理污水,管道越短,鋪設(shè)管道的成本越低.設(shè)計(jì)要求管道的接口H是的中點(diǎn),點(diǎn)E,F分別落在線(xiàn)段上.已知,記.
(1)試將污水管道的長(zhǎng)度表示為的函數(shù),并寫(xiě)出定義域;
(2)已知,求此時(shí)管道的長(zhǎng)度l;
(3)當(dāng)取何值時(shí),鋪設(shè)管道的成本最低?并求出此時(shí)管道的長(zhǎng)度.
【答案】(1);(2);(3)當(dāng)時(shí),l取到最小值
【解析】
(1)由∠BHE=θ,H是AB的中點(diǎn),易得,,,由污水凈化管道的長(zhǎng)度L=EH+FH+EF,則易將污水凈化管道的長(zhǎng)度L表示為θ的函數(shù).
(2)若,結(jié)合(1)中所得的函數(shù)解析式,代入易得管道的長(zhǎng)度L的值.
(3)設(shè)sinθ+cosθ=t得,利用角的范圍結(jié)合三角函數(shù)性質(zhì)求得t的范圍,再利用的單調(diào)性求最值即可
(1)由題,,
由于,,
,
(2)當(dāng)時(shí),,
;
(3)
設(shè)sinθ+cosθ=t則
由于,所以
因?yàn)?/span>在內(nèi)單調(diào)遞減,于是當(dāng)時(shí).L的最小值米.
答:當(dāng)時(shí),所鋪設(shè)管道的成本最低,此時(shí)管道的長(zhǎng)度為米
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)要得到的圖像,只需要把函數(shù)的圖像上的對(duì)應(yīng)點(diǎn)的橫坐標(biāo)_________,縱坐標(biāo)_________;
(2)要得到的圖像,只需要把函數(shù)的圖像上的對(duì)應(yīng)點(diǎn)的橫坐標(biāo)_________,縱坐標(biāo)___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了監(jiān)控某種零件的一條生產(chǎn)線(xiàn)的生產(chǎn)過(guò)程,檢驗(yàn)員每天從該生產(chǎn)線(xiàn)上隨機(jī)抽取16個(gè)零件,并測(cè)量其尺寸(單位:cm).根據(jù)長(zhǎng)期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線(xiàn)正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布N(μ,σ2).
(1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個(gè)零件中其尺寸在(μ-3σ,μ+3σ)之外的零件數(shù),求P(X≥1)及X的數(shù)學(xué)期望;
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(μ-3σ,μ+3σ)之外的零件,就認(rèn)為這條生產(chǎn)線(xiàn)在這一天的生產(chǎn)過(guò)程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查.
①試說(shuō)明上述監(jiān)控生產(chǎn)過(guò)程方法的合理性;
②下面是檢驗(yàn)員在一天內(nèi)抽取的16個(gè)零件的尺寸:
經(jīng)計(jì)算得==9.97,s==≈0.212,其中xi為抽取的第i個(gè)零件的尺寸,i=1,2,…,16.
用樣本平均數(shù)作為μ的估計(jì)值,用樣本標(biāo)準(zhǔn)差s作為σ的估計(jì)值,,利用估計(jì)值判斷是否需對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查?剔除(﹣3+3)之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)μ和σ(精確到0.01).
附:若隨機(jī)變量Z服從正態(tài)分布N(μ,σ2),則P(μ-3σ<Z<μ+3σ)=0.997 4.0.997 416≈0.959 2,≈0.09.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中央政府為了應(yīng)對(duì)因人口老齡化而造成的勞動(dòng)力短缺等問(wèn)題,擬定出臺(tái)“延遲退休年齡政策”.為了解人們對(duì)“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研.人社部從網(wǎng)上年齡在15~65歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的支持度有差異;
(2)若以45歲為分界點(diǎn),從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項(xiàng)活動(dòng).現(xiàn)從這8人中隨機(jī)抽2人.
①抽到1人是45歲以下時(shí),求抽到的另一人是45歲以上的概率.
②記抽到45歲以上的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù):
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為: .
(1)把直線(xiàn)的參數(shù)方程化為極坐標(biāo)方程,把曲線(xiàn)的極坐標(biāo)方程化為普通方程;
(2)求直線(xiàn)與曲線(xiàn)交點(diǎn)的極坐標(biāo)(≥0,0≤).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司招聘員工,先由兩位專(zhuān)家面試,若兩位專(zhuān)家都同意通過(guò),則視作通過(guò)初審予以錄用;若兩位專(zhuān)家都未同意通過(guò),則視作未通過(guò)初審不予錄用;當(dāng)這兩位專(zhuān)家意見(jiàn)不一致時(shí),再由第三位專(zhuān)家進(jìn)行復(fù)審,若能通過(guò)復(fù)審則予以錄用,否則不予錄用.設(shè)應(yīng)聘人員獲得每位初審專(zhuān)家通過(guò)的概率為0.5,復(fù)審能通過(guò)的概率為0.3,各專(zhuān)家評(píng)審的結(jié)果相互獨(dú)立.
(Ⅰ)求某應(yīng)聘人員被錄用的概率;
(Ⅱ)若4人應(yīng)聘,設(shè)X為被錄用的人數(shù),試求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著人們經(jīng)濟(jì)收入的不斷增長(zhǎng),個(gè)人購(gòu)買(mǎi)家庭轎車(chē)已不再是一種時(shí)尚車(chē)的使用費(fèi)用,尤其是隨著使用年限的增多,所支出的費(fèi)用到底會(huì)增長(zhǎng)多少,一直是購(gòu)車(chē)一族非常關(guān)心的問(wèn)題某汽車(chē)銷(xiāo)售公司作了一次抽樣調(diào)查,并統(tǒng)計(jì)得出某款車(chē)的使用年限與所支出的總費(fèi)用(萬(wàn)元)有如表的數(shù)據(jù)資料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
總費(fèi)用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1) 在給出的坐標(biāo)系中作出散點(diǎn)圖;
(2)求線(xiàn)性回歸方程中的、;
(3)估計(jì)使用年限為年時(shí),車(chē)的使用總費(fèi)用是多少?
(最小二乘法求線(xiàn)性回歸方程系數(shù)公式, .)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若的圖象在點(diǎn)處的切線(xiàn)方程為,求在區(qū)間[-2,4]上的最大值;
(2)當(dāng)時(shí),若在區(qū)間(-1,1)上不單調(diào),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com