從圓x2+y2=4上任意一點P向x軸作垂線段PD,則線段PD的中點M的軌跡方程為
x2
4
+y2=1
x2
4
+y2=1
分析:利用中點坐標(biāo)公式,確定P,M坐標(biāo)之間的關(guān)系,將P的坐標(biāo)代入圓的方程,即可求得M的軌跡方程.
解答:解:設(shè)M(x,y),則P(x,2y)
∵P在圓x2+y2=4上,
∴x2+4y2=4,
x2
4
+y2=1

故答案為:
x2
4
+y2=1
點評:本題考查軌跡方程,考查代入法的運用,考查學(xué)生的計算能力,確定坐標(biāo)之間的關(guān)系是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)從圓x2+y2=4上任意一點P作x軸的垂線,垂足為Q,點M在線段PQ上,且
QM
QP
(0<λ<1)

(Ⅰ)求點M的軌跡C的方程;
(Ⅱ)如果點A(-3,4)關(guān)于直線y=x+4的對稱點B在曲線C上,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從圓O:x2+y2=4上任意一點P向x軸作垂線,垂足為P′,點M是線段PP′的中點,則點M的軌跡方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年北京市豐臺區(qū)高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

從圓x2+y2=4上任意一點P作x軸的垂線,垂足為Q,點M在線段PQ上,且
(Ⅰ)求點M的軌跡C的方程;
(Ⅱ)如果點A(-3,4)關(guān)于直線y=x+4的對稱點B在曲線C上,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省溫州市十校聯(lián)考高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

從圓x2+y2=4上任意一點P向x軸作垂線段PD,則線段PD的中點M的軌跡方程為   

查看答案和解析>>

同步練習(xí)冊答案