10.設(shè)集合M={x|0≤x≤3},N={x|x2-3x-4<0},則M∩N=( 。
A.[-1,3]B.(-1,3)C.[0,3]D.[-1,4]

分析 先分別求出集合M和N,由此利用交集定義能求出M∩N.

解答 解:∵集合M={x|0≤x≤3},
N={x|x2-3x-4<0}={x|-1<x<4},
∴M∩N={x|0≤x≤3}=[0,3].
故選:C.

點(diǎn)評(píng) 本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知x=$\frac{π}{12}$是函數(shù)f(x)=$\sqrt{3}$sin(2x+φ)+cos(2x+φ)(0<φ<π)圖象的一條對(duì)稱軸,將函數(shù)f(x)的圖象向右平移$\frac{3π}{4}$個(gè)單位后得到函數(shù)g(x)的圖象,則函數(shù)g(x)在[-$\frac{π}{4}$,$\frac{π}{6}$]上的最小值為( 。
A.-2B.-1C.-$\sqrt{2}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知E(2,2)是拋物線C:y2=2px上一點(diǎn),經(jīng)過(guò)點(diǎn)(2,0)的直線l與拋物線C交于A,B兩點(diǎn)(不同于點(diǎn)E),直線EA,EB分別交直線x=-2于點(diǎn)M,N.
(Ⅰ)求拋物線方程及其焦點(diǎn)坐標(biāo);
(Ⅱ)求證:OM與ON相互垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)函數(shù)$f(x)=ln({x+1})+\frac{1}{2}a{x^2}-x$,其中a∈R.
(Ⅰ)當(dāng)a=2時(shí),討論函數(shù)f(x)的單調(diào)性,并說(shuō)明理由;
(Ⅱ)若?x>0,f(x)≥ax-x成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知△ABC,$\overrightarrow{AE}$=$\frac{1}{3}$$\overrightarrow{AB}$,$\overrightarrow{BD}$=$\frac{1}{3}$$\overrightarrow{BC}$,AD與CE的交點(diǎn)為G,$\overrightarrow{BA}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,若$\overrightarrow{BG}$=λ$\overrightarrow{a}$+μ$\overrightarrow$,則λ+μ=( 。
A.$\frac{2}{7}$B.$\frac{3}{7}$C.$\frac{4}{7}$D.$\frac{5}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知直線l:mx+y-1=0(m∈R)是圓C:x2+y2-4x+2y+1=0的對(duì)稱軸,過(guò)點(diǎn)A(-2,m)作圓C的一條切線,切點(diǎn)為B,則|AB|為( 。
A.4B.$2\sqrt{5}$C.$4\sqrt{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.各項(xiàng)均為正數(shù)的等比數(shù)列{an}的前n項(xiàng)和為Sn,滿足${S_{n+2}}=4{S_n}+6,n∈{N^*}$.
(1)求a1及通項(xiàng)公式an;
(2)若${b_n}=\frac{n}{a_n}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)$f(x)=\frac{{10ln|{x+1}|}}{x+1}$的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若變量x,y滿足約束條件$\left\{\begin{array}{l}x≥1\\ y≥x\\ 3x+2y≤15\end{array}\right.$,則z=3x+y的最大值為( 。
A.4B.9C.12D.14

查看答案和解析>>

同步練習(xí)冊(cè)答案