(本題滿分12分)如圖,四棱錐P—ABCD的底面是矩形,PA⊥面ABCD,PA=2,AB=8,BC=6,點(diǎn)E是PC的中點(diǎn),F(xiàn)在AD上且AF:FD=1:2.建立適當(dāng)坐標(biāo)系.
(1)求EF的長;
(2)證明:EF⊥PC.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,PA垂直于矩形ABCD所在的平面,,E、F分別是AB、PD的中點(diǎn).
(Ⅰ)求證:平面PCE 平面PCD;
(Ⅱ)求三棱錐P-EFC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)如右圖,簡單組合體ABCDPE,其底面ABCD為邊長為的正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC=.
(1)若N為線段PB的中點(diǎn),求證:EN//平面ABCD;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分) 如圖,平面⊥平面,其中為矩形,為梯形,∥,⊥,==2=2,為中點(diǎn).
(Ⅰ) 證明;
(Ⅱ) 若二面角的平面角的余弦值為,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
如圖,在四棱錐中,底面為平行四邊形,平面,在棱上.
(I)當(dāng)時(shí),求證平面
(II)當(dāng)二面角的大小為時(shí),求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)已知:四邊形ABCD是空間四邊形,E, H分別是邊AB,AD的中點(diǎn),F(xiàn), G分別是邊CB,CD上的點(diǎn),且.
求證:(1)四邊形EFGH是梯形;
(2)FE和GH的交點(diǎn)在直線AC上 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)
如圖,棱錐P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.
(1)求證:BD⊥平面PAC;
(2)求二面角P—CD—B余弦值的大小
(3)求點(diǎn)C到平面PBD的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com