【題目】如圖,已知三棱錐中,平面平面ABC,,BD=3,AD=1,AC=BC,M為線段AB的中點(diǎn).

(Ⅰ)求證:平面ACD;

(Ⅱ)求異面直線MD與BC所成角的余弦值;

(Ⅲ)求直線MD與平面ACD所成角的余弦值.

【答案】(Ⅰ)詳見解析;(Ⅱ);(Ⅲ).

【解析】

(Ⅰ)由題意結(jié)合幾何關(guān)系可得,結(jié)合,和線面垂直的判定定理即可證得題中的結(jié)論;

(Ⅱ)取AC中點(diǎn)N,連接MN,DN,易知(或其補(bǔ)角)為異面直線MDBC所成的角,據(jù)此結(jié)合幾何性質(zhì)可得異面直線MDBC所成角的余弦值.

(Ⅲ)結(jié)合(Ⅱ)可知為直線MD與平面ACD所成的角,據(jù)此可得線面角的余弦值.

(Ⅰ)∵平面平面ABCAB,,平面ABD,

平面ABC,

,又,

平面ACD.

(Ⅱ)取AC中點(diǎn)N,連接MN,DN,

MAB中點(diǎn),

,

(或其補(bǔ)角)為異面直線MDBC所成的角,

由(Ⅰ)知平面ACD,

平面ACD,

中,,

即異面直線MDBC所成角的余弦值為.

(Ⅲ)由(Ⅱ)為直線MD與平面ACD所成的角,在中,,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

(Ⅰ)當(dāng)a=1時(shí),求函數(shù)的單調(diào)區(qū)間:

(Ⅱ)求函數(shù)的極值;

(Ⅲ)若函數(shù)有兩個(gè)不同的零點(diǎn),求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“割圓術(shù)”是劉徽最突出的數(shù)學(xué)成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計(jì)算圓的周長(zhǎng),面積已經(jīng)圓周率的基礎(chǔ),劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個(gè)近似數(shù)值,這個(gè)結(jié)果是當(dāng)時(shí)世界上圓周率計(jì)算的最精確數(shù)據(jù).如圖,當(dāng)分割到圓內(nèi)接正六邊形時(shí),某同學(xué)利用計(jì)算機(jī)隨機(jī)模擬法向圓內(nèi)隨機(jī)投擲點(diǎn),計(jì)算得出該點(diǎn)落在正六邊形內(nèi)的頻率為0.8269,那么通過(guò)該實(shí)驗(yàn)計(jì)算出來(lái)的圓周率近似值為(參考數(shù)據(jù):

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一棟6層樓房里,每個(gè)房間的門牌號(hào)均為三位數(shù),首位代表樓層號(hào),后兩位代表房間號(hào),如218表示的是第2層第18號(hào)房間,現(xiàn)已知有寶箱藏在如下圖18個(gè)房間里的某一間,其中甲同學(xué)只知道樓層號(hào),乙同學(xué)只知道房間號(hào),不知道樓層號(hào),現(xiàn)有以下甲乙兩人的一段對(duì)話:

甲同學(xué)說(shuō):我不知道,你肯定也不知道;

乙同學(xué)說(shuō):本來(lái)我也不知道,但是現(xiàn)在我知道了;

甲同學(xué)說(shuō):我也知道了.

根據(jù)上述對(duì)話,假設(shè)甲乙都能做出正確的推斷,則藏有寶箱的房間的門牌號(hào)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點(diǎn)在橢圓C上.

(1)求C的方程;

(2)設(shè)直線l不經(jīng)過(guò)P2點(diǎn)且與C相交于AB兩點(diǎn).若直線P2A與直線P2B的斜率的和為–1,證明:l過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(I)討論的單調(diào)性;

(II)若恒成立,證明:當(dāng)時(shí),.

(III)在(II)的條件下,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖已知橢圓,是長(zhǎng)軸的一個(gè)端點(diǎn),弦過(guò)橢圓的中心,且.

(Ⅰ)求橢圓的方程:

(Ⅱ)設(shè)為橢圓上異于且不重合的兩點(diǎn),且的平分線總是垂直于軸,是否存在實(shí)數(shù),使得,若存在,請(qǐng)求出的最大值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線不與坐標(biāo)軸垂直,且與拋物線有且只有一個(gè)公共點(diǎn).

1)當(dāng)點(diǎn)的坐標(biāo)為時(shí),求直線的方程;

2)設(shè)直線軸的交點(diǎn)為,過(guò)點(diǎn)且與直線垂直的直線交拋物線,兩點(diǎn).當(dāng)時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,設(shè)命題函數(shù)R上單調(diào)遞減,命題對(duì)任意實(shí)數(shù)x,不等式恒成立.

1)求非q為真時(shí),實(shí)數(shù)c的取值范圍;

2)如果命題為真命題,且為假命題,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案