橢圓的中心在原點,對稱軸為坐標軸,橢圓短軸的一個頂點B與兩個焦點F1F2組成的三角形的周長是4+

2,且∠F1BF2=,求橢圓的方程.

解:依題意,可設(shè)橢圓的方程是=1或=1(ab>0).

∵2a+2c=4+2,∴a+c=2+.

又∠F1BF2=,

c=a·sin=a.

a=2,c=,b2=a2c2=1.

故所求橢圓的方程是+y2=1或+x2=1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在原點,焦點在x軸上,長軸長是短軸長的2倍且經(jīng)過點M(2,1),平行于OM的直線l交橢圓于A、B兩點.
(1)求橢圓的方程;
(2)已知e=(t,0),p=λ(
MA
|
MA
|
+
MB
|
MB
|
)
,是否對任意的正實數(shù)t,λ,都有
e
p
=0
成立?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•吉安縣模擬)已知橢圓的中心在原點,焦點在x軸上,長軸長是短軸長的2倍,且經(jīng)過點M(2,1),平行于OM直線?在y軸上的截距為m(m<0),設(shè)直線?交橢圓于兩個不同點A、B,
(1)求橢圓方程;
(2)求證:對任意的m的允許值,△ABM的內(nèi)心I在定直線x=2上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在原點,焦點在x軸上,F(xiàn)1、F2分別為左、右焦點,橢圓的一個頂點與兩焦點構(gòu)成等邊三角形,且|
F1F2
|=2.
(1)求橢圓方程;
(2)對于x軸上的某一點T,過T作不與坐標軸平行的直線L交橢圓于P、Q兩點,若存在x軸上的點S,使得對符合條件的L恒有∠PST=∠QST成立,我們稱S為T的一個配對點,當T為左焦點時,求T 的配對點的坐標;
(3)在(2)條件下討論當T在何處時,存在有配對點?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西高安中學(xué)高二上期末考試理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)

已知橢圓的中心在原點,焦點在軸上,長軸長是短軸長的2倍,且經(jīng)過點(2,1),平行于直線軸上的截距為,設(shè)直線交橢圓于兩個不同點,

(1)求橢圓方程;

(2)求證:對任意的的允許值,的內(nèi)心在定直線

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省宜春市高安中學(xué)高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知橢圓的中心在原點,焦點在x軸上,長軸長是短軸長的2倍,且經(jīng)過點M(2,1),平行于OM直線?在y軸上的截距為m(m<0),設(shè)直線?交橢圓于兩個不同點A、B,
(1)求橢圓方程;
(2)求證:對任意的m的允許值,△ABM的內(nèi)心I在定直線x=2上.

查看答案和解析>>

同步練習(xí)冊答案