【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.如圖,在陽馬P﹣ABCD中,側(cè)棱PD⊥底面ABCD,且PD=CD,過棱PC的中點E,作EF⊥PB交PB于點F,連接DE,DF,BD,BE.
(1)證明:PB⊥平面DEF.試判斷四面體DBEF是否為鱉臑,若是,寫出其每個面的直角(只需寫出結(jié)論);若不是,說明理由;
(2)若面DEF與面ABCD所成二面角的大小為 ,求 的值.

【答案】
(1)證明:解法1:因為PD⊥底面ABCD,所以PD⊥BC,

由底面ABCD為長方形,有BC⊥CD,而PD∩CD=D,

所以BC⊥平面PCD.而DE平面PDC,所以BC⊥DE.

又因為PD=CD,點E是PC的中點,所以DE⊥PC.

而PC∩CB=C,所以DE⊥平面PBC.而PB平面PBC,所以PB⊥DE.

又PB⊥EF,DE∩FE=E,所以PB⊥平面DEF.

由DE⊥平面PBC,PB⊥平面DEF,可知四面體BDEF的四個面都是直角三角形,

即四面體BDEF是一個鱉臑,其四個面的直角分別為∠DEB,∠DEF,∠EFB,∠DFB

解法2:

以D為原點,射線DA,DC,DP分別為x,y,z軸的正半軸,建立空間直角坐標(biāo)系.設(shè)PD=DC=1,BC=λ,

則D(0,0,0),P(0,0,1),B(λ,1,0),C(0,1,0), =(λ1,﹣1),點E是PC的中點,所以E(0, , ), =(0, ),

于是 =0,即PB⊥DE.

又已知EF⊥PB,而ED∩EF=E,所以PB⊥平面DEF.

=(0,1,﹣1), =0,則DE⊥PC,所以DE⊥平面PBC.

由DE⊥平面PBC,PB⊥平面DEF,可知四面體BDEF的四個面都是直角三角形,

即四面體BDEF是一個鱉臑,其四個面的直角分別為∠DEB,∠DEF,∠EFB,∠DFB


(2)解法1:如圖1,

在面BPC內(nèi),延長BC與FE交于點G,則DG是平面DEF與平面ACBD的交線.

由(1)知,PB⊥平面DEF,所以PB⊥DG.

又因為PD⊥底面ABCD,所以PD⊥DG.而PD∩PB=P,所以DG⊥平面PBD.

所以DG⊥DF,DG⊥DB

故∠BDF是面DEF與面ABCD所成二面角的平面角,

設(shè)PD=DC=1,BC=λ,有BD= ,

在Rt△PDB中,由DF⊥PB,得∠DPB=∠FDB=

則 tan =tan∠DPF= = = ,解得

所以 = =

故當(dāng)面DEF與面ABCD所成二面角的大小為 時, =

解法2:

由PD⊥底面ABCD,所以 =(0,0,1)是平面ACDB的一個法向量;

由(1)知,PB⊥平面DEF,所以 =(﹣λ,﹣1,1)是平面DEF的一個法向量.

若面DEF與面ABCD所成二面角的大小為 ,

則運用向量的數(shù)量積求解得出cos = = ,

解得 .所以所以 = =

故當(dāng)面DEF與面ABCD所成二面角的大小為 時, =


【解析】(1)解法1:直線與直線,直線與平面的垂直的轉(zhuǎn)化證明得出PB⊥EF,DE∩FE=E,所以PB⊥平面DEF,即可判斷DE⊥平面PBC,PB⊥平面DEF,可知四面體BDEF的四個面都是直角三角形,確定直角. 解法2:以D為原點,射線DA,DC,DP分別為x,y,z軸的正半軸,建立空間直角坐標(biāo)系,運用向量的數(shù)量積判斷即可.
(2.)根據(jù)公理2得出DG是平面DEF與平面ACBD的交線.利用直線平面的垂直判斷出DG⊥DF,DG⊥DB,根據(jù)平面角的定義得出∠BDF是面DEF與面ABCD所成二面角的平面角,轉(zhuǎn)化到直角三角形求解即可.解法2:由PD⊥底面ABCD,所以 =(0,0,1)是平面ACDB的一個法向量;由(1)知,PB⊥平面DEF,所以 =(﹣λ,﹣1,1)是平面DEF的一個法向量.根據(jù)數(shù)量積得出夾角的余弦即可得出所求解的答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的奇函數(shù)f(x),當(dāng)x≥0時,f(x)= ,則關(guān)于x的函數(shù)F(x)=f(x)﹣a(0<a<1)的所有零點之和為(
A.3a﹣1
B.1﹣3a
C.3a﹣1
D.1﹣3a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知坐標(biāo)平面上的凸四邊形 ABCD 滿足 =(1, ), =(﹣ ,1),則凸四邊形ABCD的面積為; 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)上的一個最高點的坐標(biāo)為,由此點到相鄰最低點間的曲線與x軸交于點,若.

(1)求的解析式.

(2)求上的值域.

(3)若對任意實數(shù),不等式上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若a和b是計算機在區(qū)間(0,3)上產(chǎn)生的隨機數(shù),那么函數(shù)f(x)=lg(ax2+4x+4b) 的值域為R的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知常數(shù)a>0,函數(shù)f(x)=ln(1+ax)﹣
(Ⅰ)討論f(x)在區(qū)間(0,+∞)上的單調(diào)性;
(Ⅱ)若f(x)存在兩個極值點x1 , x2 , 且f(x1)+f(x2)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b∈R,函數(shù) ,g(x)=ex(e為自然對數(shù)的底數(shù)),且函數(shù)f(x)的圖象與函數(shù)g(x)的圖象在x=0處有公共的切線.
(Ⅰ)求b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若g(x)>f(x)在區(qū)間(﹣∞,0)內(nèi)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,內(nèi)角A、B、C的對邊分別為ab、c,已知b2=accosB=

(1)求的值;

(2)設(shè),求a+c的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+3x2+1,若至少存在兩個實數(shù)m,使得f(﹣m),f(1)、f(m+2)成等差數(shù)列,則過坐標(biāo)原點作曲線y=f(x)的切線可以作(
A.3條
B.2條
C.1條
D.0條

查看答案和解析>>

同步練習(xí)冊答案