在平面幾何中有如下結論:正三角形ABC的內切圓面積為S1,外接圓面積S2,且內切圓半徑與外接圓半徑之比為
1
2
,則
S1
S2
=
1
4
,推廣到空間可以得到類似結論:已知正四面體P-ABC(所有棱長都相等的三棱錐)的內切球體積為V1,外接球體積為V2,且內切球與外接球的半徑之比為
1
3
,則等于
V1
V2
( 。
A、
1
8
B、
1
9
C、
1
27
D、
1
64
考點:球的體積和表面積
專題:
分析:平面圖形類比空間圖形,二維類比三維得到類比平面幾何的結論,則正四面體的外接球和內切球的半徑之比是 3:1,從而得出正四面體P-ABC的內切球體積為V1,外接球體積為V2之比.
解答: 解:從平面圖形類比空間圖形,從二維類比三維,
可得如下結論:正四面體的外接球和內切球的半徑之比是 3:1
故正四面體P-ABC的內切球體積為V1,外接球體積為V2之比等于
V1
V2
=
1
27

故選:C.
點評:主要考查知識點:類比推理,簡單幾何體和球,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在實數(shù)集R上的奇函數(shù),且在區(qū)間[0,+∞)上是單調遞增,若f(lg2•lg50+(lg5)2)+f(lgx-2)<0,則x的取值范圍是( 。
A、(0,1)
B、(0,10)
C、(0,5)
D、(0,9)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={an|an=2n-1,0≤n≤3且n∈N},B={1,2,3,4,5 }  則A∩B的子集的個數(shù)是( 。
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={-1,1,2},B={a+1,a2+3},A∩B={2},則實數(shù)a的值為(  )
A、1B、2C、3D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

大可以商場在春節(jié)舉行抽獎促銷活動,規(guī)則是:從裝有編為0,1,2,3四個小球的抽獎箱中同時抽出兩個小球,兩個小球號碼相加之和等于5中一等獎,等于4中二等獎,等于3中三等獎,則中獎的概率是( 。
A、
1
3
B、
2
3
C、
1
4
D、
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中既是奇函數(shù),又在區(qū)間(0,+∞)上單調遞增的是( 。
A、y=sinx
B、y=-x2
C、y=xlg2
D、y=-x3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在數(shù)列{an}中,Sn=4an+2,a1=-
2
3
,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動圓P與圓F1:x2+(y+2)2=
121
4
內切,與圓F2:x2+(y-2)2=
1
4
外切,記動圓圓心點P的軌跡為E.
(Ⅰ)求軌跡E的方程;
(Ⅱ)若直線l過點F2且與軌跡E相交于P、Q兩點.
(i)設點M(0,m),問:是否存在實數(shù)m,使得直線l繞點F2無論怎樣轉動,都有
MP
MQ
=0成立?若存在,求出實數(shù)m的值;若不存在,請說明理由;
(ii)設△F1PQ的內切圓半徑為r,求r的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an},{bn}滿足a1=
2
3
,an+1=
2an
an+2
,b1+2b2+22b3+…+2n-1bn=n(n∈N*).
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設數(shù)列{
bn
an
}的前n項和Tn,問是否存在正整數(shù)m、M,且M-n=3,使得m<Tn<M對一切n∈N*恒成立?若存在,求出m、M的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案