【題目】在對(duì)某漁業(yè)產(chǎn)品的質(zhì)量調(diào)研中,從甲、乙兩地出產(chǎn)的該產(chǎn)品中各隨機(jī)抽取10件,測(cè)量該產(chǎn)品中某種元素的含量(單位:毫克).如圖是測(cè)量數(shù)據(jù)的莖葉圖:
規(guī)定:當(dāng)產(chǎn)品中的此種元素含量≥15毫克時(shí)為優(yōu)質(zhì)品.
(Ⅰ)試用上述樣本數(shù)據(jù)估計(jì)甲、乙兩地該產(chǎn)品的優(yōu)質(zhì)品率(優(yōu)質(zhì)品件數(shù)/總件數(shù));
(Ⅱ)從乙地抽出的上述10件產(chǎn)品中,隨機(jī)抽取3件,求抽到的3件產(chǎn)品中優(yōu)質(zhì)品數(shù)ξ的分布列及數(shù)學(xué)期望E(ξ).
【答案】解:(Ⅰ)甲廠抽取的樣本中優(yōu)等品有7件,優(yōu)等品率為 . 乙廠抽取的樣本中優(yōu)等品有8件,優(yōu)等品率為 .
(Ⅱ)ξ的取值為1,2,3.
,
∴ξ的分布列為
ξ | 1 | 2 | 3 |
P |
∴ξ的數(shù)學(xué)期望為Eξ=1× +2× +3× =
【解析】(I)由已知條件,利用古典概型概率的計(jì)算公式,能求出甲、乙兩地該產(chǎn)品的優(yōu)質(zhì)品率.(II)ξ的取值為1,2,3.分別求出其概率,由此能求出ξ的分布列和數(shù)學(xué)期望.
【考點(diǎn)精析】掌握莖葉圖是解答本題的根本,需要知道莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進(jìn)行比較,將數(shù)的大小基本不變或變化不大的位作為一個(gè)主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個(gè)主干后面的幾個(gè)數(shù),每個(gè)數(shù)具體是多少.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】蘇州市一木地板廠生產(chǎn)A、B、C三類木地板,每類木地板均有環(huán)保型和普通兩種型號(hào),某月的產(chǎn)量如下表(單位:片):
類型 | 木地板A | 木地板B | 木地板C |
環(huán)保型 | 150 | 200 | Z |
普通型 | 250 | 400 | 600 |
按分層抽樣的方法在這個(gè)月生產(chǎn)的木地板中抽取50片,其中A類木地板10片.
(1)求Z的值;
(2)用隨機(jī)抽樣的方法從B類環(huán)保木地板抽取8片,作為一個(gè)樣本,經(jīng)檢測(cè)它們的得分如下:9.4、8.6、9.2、9.6、8.7、9.3、9.0、8.2,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對(duì)不超過0.5的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè) ,對(duì)任意x∈R,不等式a(cos2x﹣m)+πcosx≥0恒成立,則實(shí)數(shù)m的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若f(x)=x3+ax2+bx+c有兩個(gè)極值點(diǎn)x1 , x2且f(x1)=x1 , 則關(guān)于x的方程3[(f(x)]2+2af(x)+b=0的不同實(shí)根個(gè)數(shù)為( )
A.2
B.3
C.4
D.不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2cosxsin(x+ )﹣ sin2x+sinxcosx
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)將函數(shù)f(x)的圖象向右平移m個(gè)單位,使所得函數(shù)為偶函數(shù),求m的最小正值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),f(x+2)=f(x),當(dāng)x∈(0,1]時(shí),f(x)=1﹣2|x﹣ |,則函數(shù)g(x)=f[f(x)]﹣ x在區(qū)間[﹣2,2]內(nèi)不同的零點(diǎn)個(gè)數(shù)是( )
A.5
B.6
C.7
D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐中,底面為菱形,且,是邊長為的正三角形,且平面平面,已知點(diǎn)是的中點(diǎn).
(Ⅰ)證明:平面;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)g(x)=ax3+2(1﹣a)x2﹣3ax在區(qū)間(﹣∞, )內(nèi)單調(diào)遞減,則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4—4:坐標(biāo)系與參數(shù)方程】
將圓上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>2倍,得曲線C.
(Ⅰ)寫出C的參數(shù)方程;
(Ⅱ)設(shè)直線與C的交點(diǎn)為,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過線段的中點(diǎn)且與垂直的直線的極坐標(biāo)方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com