【題目】設△ABC的內(nèi)角A,B,C所對的邊分別是a,b,c,若AB邊上的高為 ,且a2+b2=2 ab,則C=( )
A.
B.
C.
D.

【答案】B
【解析】解:∵AB邊上的高為 ,且a2+b2=2 ab,
∴SABC= absinC= ,可得:sinC= ,c2=2absinC,
∵由余弦定理可得:cosC= = = ﹣sinC.
∴可得:sinC+cosC= ,兩邊平方即有:1+sin2C=2,解得:sin2C=1,
∵0<C<π,0<2C<2π,
∴2C= ,解得:C=
故選:B.
【考點精析】本題主要考查了正弦定理的定義和余弦定理的定義的相關知識點,需要掌握正弦定理:;余弦定理:;;才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=lnx﹣ ax2﹣2x,其中a≤0.
(1)若曲線y=f(x)在點(1,f(1))處的切線方程為y=2x+b,求a﹣2b的值;
(2)討論函數(shù)f(x)的單調(diào)性;
(3)設函數(shù)g(x)=x2﹣3x+3,如果對于任意的x,t∈(0,1],都有f(x)≤g(t)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x)的導函數(shù)y=f'(x)的圖像如圖所示.

則下列說法中正確的是____(填序號).

函數(shù)y=f(x)在區(qū)間上單調(diào)遞增;

函數(shù)y=f(x)在區(qū)間上單調(diào)遞減;

函數(shù)y=f(x)在區(qū)間(4,5)上單調(diào)遞增;

x=2,函數(shù)y=f(x)有極小值;

x=-,函數(shù)y=f(x)有極大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設Sn為數(shù)列{an}的前n項和,已知a1≠0,2an﹣a1=S1Sn , n∈N*
(1)求a1a2 , 并求數(shù)列{an}的通項公式,
(2)求數(shù)列{nan}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,P是⊙O外一點,PA是切線,A為切點,割線PBC與⊙O相交于點B,C,PC=2PA,D為PC的中點,AD的延長線交⊙O于點E,證明:

(1)BE=EC;
(2)ADDE=2PB2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐P﹣ABCD中,側面PAD⊥底面ABCD,底面ABCD是邊長為2的正方形,又PA=PD,∠APD=60°,E,G分別是BC,PE的中點

(1)求證:AD⊥PE
(2)求二面角E﹣AD﹣G的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P(x0,3)與點Q(x0,4)分別在橢圓=1與拋物線y2=2px(p>0).

(1)求拋物線的方程;

(2)設點A(x1,y1),B(x2,y2)(y1≤0,y2≤0)是拋物線上的兩點,∠AQB的角平分線與x軸垂直,求直線ABy軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“中國式過馬路”存在很大的交通安全隱患.某調(diào)查機構為了解路人對“中國式過馬路”的態(tài)度是否與性別有關,從馬路旁隨機抽取30名路人進行了問卷調(diào)查,得到了如下列聯(lián)表:

項目

男性

女性

總計

反感

10

不反感

8

總計

30

已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是.

(1)請將上面的列聯(lián)表補充完整(直接寫結果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路”與性別是否有關?

(2)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學期望.

附:K2

.

P(K2≥k0)

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】抽樣得到某次考試中高二年級某班8名學生的數(shù)學成績和物理成績?nèi)缦卤恚?/span>

學生編號

1

2

3

4

5

6

7

8

數(shù)學成績x

60

65

70

75

80

85

90

95

物理成績y

72

77

80

84

88

90

93

95

(1) 求yx的線性回歸直線方程(系數(shù)保留到小數(shù)點后兩位).

(2) 如果某學生的數(shù)學成績?yōu)?3分,預測他本次的物理成績.

(參考公式:回歸直線方程為x,其中

,ab.參考數(shù)據(jù):=77.5,

≈84.9,,.)

查看答案和解析>>

同步練習冊答案