函數(shù)f(x)是一個偶函數(shù),g(x)是一個奇函數(shù),且數(shù)學(xué)公式,則f(x)解析式為________.


分析:將-x代入已知解析式,結(jié)合奇偶性的定義f(-x)=f(x),g(-x)=-g(x),整理可得f(x)與g(x)的又一關(guān)系式,與已知解析式聯(lián)立解方程即可.
解答:∵f(x)是一個偶函數(shù),g(x)是一個奇函數(shù),
∴f(-x)=f(x),g(-x)=-g(x),
①,
②,
①②聯(lián)立,解得f(x)=
故答案為:
點評:本題考查了函數(shù)奇偶性的定義,注意將-x代入已知解析式從而構(gòu)造出f(x)與g(x)的又一關(guān)系的方法的應(yīng)用,同時考查了學(xué)生的方程思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義域為R的函數(shù)f(x)滿足:對于任意的實數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且當(dāng)x>0時f(x)<0恒成立.
(1)判斷函數(shù)f(x)的奇偶性,并證明你的結(jié)論;
(2)證明f(x)為減函數(shù);若函數(shù)f(x)在[-3,3]上總有f(x)≤6成立,試確定f(1)應(yīng)滿足的條件;(3)解關(guān)于x的不等式
1
n
f(ax2)-f(x)>
1
n
f(a2x)-f(a)
,(n是一個給定的自然數(shù),a<0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、觀察下列各式:①(x3)′=3x2;②(sinx)′=cosx;③(2x-2-x)′=2x+2-x;④(xcosx)′=cosx-xsinx根據(jù)其中函數(shù)f(x)及其導(dǎo)函數(shù)f′(x)的奇偶性,運用歸納推理可得到的一個命題是:
奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域D關(guān)于原點對稱,0∈D,且存在常數(shù)a>0,使f(a)=1,又f(x1-x2)=
f(x1)-f(x2)1+f(x1)f(x2)

(1)寫出f(x)的一個函數(shù)解析式,并說明其符合題設(shè)條件;
(2)判斷并證明函數(shù)f(x)的奇偶性;
(3)若存在正常數(shù)T,使得等式f(x)=f(x+T)或者f(x)=f(x-T)對于x∈D都成立,則都稱f(x)是周期函數(shù),T為周期;試問f(x)是不是周期函數(shù)?若是,則求出它的一個周期T;若不是,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4x
x2+a
.請完成以下任務(wù):
(Ⅰ)探究a=1時,函數(shù)f(x)在區(qū)間[0,+∞)上的最大值.為此,我們列表如下
x 0 0.1 0.2 0.5 0.8 1 1.2 1.5 1.8 2 4 6
y 0 0.396 0.769 1.6 1.951 2 1.967 1.846 1.698 1.6 0.941 0.649
請觀察表中y值隨x值變化的特點,解答以下兩個問題.
(1)寫出函數(shù)f(x),在[0,+∞)上的單調(diào)區(qū)間;指出在各個區(qū)間上的單調(diào)性,并對其中一個區(qū)間的單調(diào)性用定義加以證明.
(2)請回答:當(dāng)x取何值時f(x)取得最大值,f(x)的最大值是多少?
(Ⅱ)按以下兩個步驟研究a=1時,函數(shù)f(x)=
4x
x2+a
,(x∈R)
的值域.
(1)判斷函數(shù)f(x)的奇偶性;
(2)結(jié)合已知和以上研究,畫出函數(shù)f(x)的大致圖象,指出函數(shù)的值域.
(Ⅲ)己知a=-1,f(x)的定義域為(-1,1),解不等式f(4-3x)+f(x-
3
2
)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
x
-log2
1+x
1-x

(1)試求函數(shù)f(x)的定義域,并判斷函數(shù)f(x)的奇偶性;
(2)已知a是方程f(x)=0的一個實數(shù)解,求證:|a|>
1
2

查看答案和解析>>

同步練習(xí)冊答案