如圖,在棱長為1的正方體ABCDA1B1C1D1中.

(1)求證:B1D⊥平面A1C1B;(2)求三棱錐B1A1C1B的體積;

(3)求異面直線BC1AA1所成的角的大小.

(1)證明:如圖,連BDB1D1,

A1B1C1D1是正方形,

A1C1B1D1

又∵ BB1⊥底面A1B1C1D1,A1C1底面A1B1C1D1

A1C1BB1,∴ A1C1⊥平面BB1D1D

B1DA1C1,同理可證:B1DBC1,且A1C1BC1C1,

B1D⊥平面A1C1B.

(2)解:··1·1·1=.

(3)解:∵ AA1BB1

∴ 異面直線BC1AA1所成的角就是BC1BB1所成的角,即∠B1BC1=450.

故異面直線BC1AA1所成的角為450.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在棱長都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點.
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,一棱長為2的正四面體O-ABC的頂點O在平面α內,底面ABC平行于平面α,平面OBC與平面α的交線為l.
(1)當平面OBC繞l順時針旋轉與平面α第一次重合時,求平面OBC轉過角的正弦
值.
(2)在上述旋轉過程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點為O1.當AO⊥平面α時,問在線段OA上是否存在一點P,使O1P⊥OBC?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在棱長都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點.
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年江蘇省南京市金陵中學高三(上)8月月考數(shù)學試卷(解析版) 題型:解答題

如圖,在棱長都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點.
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年安徽省合肥八中高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

如圖,一棱長為2的正四面體O-ABC的頂點O在平面α內,底面ABC平行于平面α,平面OBC與平面α的交線為l.
(1)當平面OBC繞l順時針旋轉與平面α第一次重合時,求平面OBC轉過角的正弦
值.
(2)在上述旋轉過程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點為O1.當AO⊥平面α時,問在線段OA上是否存在一點P,使O1P⊥OBC?請說明理由.

查看答案和解析>>

同步練習冊答案