已知直線l:y=2x+m與圓(x+2)2+y2=
1
5
和拋物線y2=2px(p>0)都相切,求P的值.
考點(diǎn):圓的切線方程
專題:計(jì)算題,直線與圓
分析:利用直線l:y=2x+m與圓(x+2)2+y2=
1
5
相切,求出m,再利用直線l:y=2x+m與拋物線y2=2px(p>0)相切,求p的值.
解答: 解:∵直線l:y=2x+m與圓(x+2)2+y2=
1
5
相切,
|-4+m|
5
=
1
5
,
∴m=5或3,
∴直線l:y=2x+5或y=2x+3,
y=2x+5與y2=2px聯(lián)立可得y2-py+5p=0,△=p2-20p=0,∵p>0,∴p=20;
y=2x+3與y2=2px聯(lián)立可得y2-py+3p=0,△=p2-12p=0,∵p>0,∴p=12.
綜上述,p=20或p=12.
點(diǎn)評(píng):本題考查直線與圓、拋物線相切,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知某個(gè)幾何體的三視圖,根據(jù)圖中尺寸,這個(gè)幾何體的體積是多少
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:
(1)2(1-sinα)(1+cosα)=(1-sinα+cosα)2
(2)
tan2α-cot2α
sin2α-cos2α
=sec2α+csc2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,2a1+3a2=11,2a3=a2+a6-4,其前n項(xiàng)和為Sn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=
1
Sn+n
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�