(1)(坐標(biāo)系與參數(shù)方程選做題)已知曲線C1、C2的極坐標(biāo)方程分別為數(shù)學(xué)公式,數(shù)學(xué)公式,則曲線C1上的點(diǎn)與曲線C2上的點(diǎn)的最遠(yuǎn)距離為_(kāi)_______.
(2)(不等式選擇題)設(shè)數(shù)學(xué)公式,c=x+y,若對(duì)任意的正實(shí)數(shù)x,y,都存在以a,b,c為三邊長(zhǎng)的三角形,則實(shí)數(shù)P的取值范圍是________.

曲線C1極坐標(biāo)方程為ρ=-2cos(θ+),即ρ=2sinθ,ρ2=2ρsinθ
化為直角坐標(biāo)方程為x2+y2-2y=0.即x2+(y-1)2=1.
表示以C(0,1)為圓心,半徑為1 的圓.
C2的極坐標(biāo)方程為,ρcos(θ-)+1=0,即 ρ( cosθ+sinθ)+1=0,
化為普通方程為x+y+1=0,表示一條直線
如圖,圓心到直線距離d=|CQ|=,曲線C1上的點(diǎn)與曲線C2上的點(diǎn)的最遠(yuǎn)距離為|PQ|=d+r=+1
(2)對(duì)于正實(shí)數(shù)x,y,由于a==,c=x+y≥2 ,b=p ,且三角形任意兩邊之和大于第三邊,所以 +2 >b=p ,且p +>2 ,p +2
解得 1<p<3,故實(shí)數(shù)p的取值范圍是(1,3),
故答案為:+1,(1,3).
分析:(1)先將曲線的極坐標(biāo)方程方程化為普通方程,曲線C1的普通方程為x2+y2=2y,即x2+(y-1)2=1.表示以C(0,1)為圓心,半徑為1 的圓.曲線C2的普通方程為x+y+1=0,表示一條直線.利用直線和圓的位置關(guān)系求解.
(2)由基本不等式可得a≥,c≥2 ,再由三角形任意兩邊之和大于第三邊可得,+2 >b=p,且p+>2,p+2,由此求得實(shí)數(shù)p的取值范圍.
點(diǎn)評(píng):(1)本題以曲線參數(shù)方程出發(fā),考查了極坐標(biāo)方程、普通方程間的互化,直線和圓的位置關(guān)系.(2)本題主要考查基本不等式的應(yīng)用,注意不等式的使用條件,以及三角形中任意兩邊之和大于第三邊,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(三選一,考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
(1)(坐標(biāo)系與參數(shù)方程選做題)在直角坐標(biāo)系中圓C的參數(shù)方程為
x=1+2cosθ
y=
3
+2sinθ
(θ為參數(shù)),則圓C的普通方程為
(x-1)2+(y-
3
)2=4
(x-1)2+(y-
3
)2=4

(2)(不等式選講選做題)設(shè)函數(shù)f(x)=|2x+1|-|x-4|,則不等式f(x)>2的解集為
{x|x<-7或x>
5
3
}
{x|x<-7或x>
5
3
}

(3)(幾何證明選講選做題) 如圖所示,等腰三角形ABC的底邊AC長(zhǎng)為6,其外接圓的半徑長(zhǎng)為5,則三角形ABC的面積是
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選做題:請(qǐng)考生在下列兩題中任選一題作答.若兩題都做,則按做的第一題評(píng)閱計(jì)分.本題共5分.
(1)(坐標(biāo)系與參數(shù)方程選做題)若曲線的極坐標(biāo)方程為ρ=2sinθ+4cosθ,以極點(diǎn)為原點(diǎn),極軸為x軸正半軸建立直角坐標(biāo)系,則該曲線的直角坐標(biāo)方程為
x2+y2-4x-2y=0
x2+y2-4x-2y=0

(2)(不等式選擇題)對(duì)于實(shí)數(shù)x,y,若|x-1|≤1,|y-2|≤1,則|x-2y+1|的最大值為
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(考生注意:請(qǐng)?jiān)谙旅鎯深}中任選一題作答,如果都做,則按所做第1題評(píng)分)
(1)(坐標(biāo)系與參數(shù)方程選做題)
曲線C1
x=1+cosθ
y=sinθ
(θ為參數(shù))上的點(diǎn)到曲線C2
x=-2
2
+
1
2
t
y=1-
1
2
t
(t為參數(shù))
上的點(diǎn)的最短距離為
1
1

(2)(幾何證明選講選做題)
如圖,已知:△ABC內(nèi)接于圓O,點(diǎn)D在OC的延長(zhǎng)線上,AD是圓O的切線,若∠B=30°,AC=1,則AD的長(zhǎng)為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江西)(1)(坐標(biāo)系與參數(shù)方程選做題)曲線C的直角坐標(biāo)方程為x2+y2-2x=0,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立積坐標(biāo)系,則曲線C的極坐標(biāo)方程為
ρ=2cosθ
ρ=2cosθ

(2)(不等式選做題)在實(shí)數(shù)范圍內(nèi),不等式|2x-1|+|2x+1|≤6的解集為
{x|-
3
2
≤ x≤
3
2
}
{x|-
3
2
≤ x≤
3
2
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選做題:請(qǐng)考生在下列兩題中任選一題作答,若兩題都做,則按所做的第一題評(píng)閱計(jì)分.
(1)(坐標(biāo)系與參數(shù)方程選做題) 在極坐標(biāo)系下,已知直線l的方程為ρcos(θ-
π
3
)=
1
2
,則點(diǎn)M(1,
π
2
)到直線l的距離為
3
-1
2
3
-1
2

(2)(幾何證明選講選做題) 如圖,P為圓O外一點(diǎn),由P引圓O的切線PA與圓O切于A點(diǎn),引圓O的割線PB與圓O交于C點(diǎn).已知AB⊥AC,PA=2,PC=1.則圓O的面積為
4
4

查看答案和解析>>

同步練習(xí)冊(cè)答案