已知是二次函數(shù),不等式的解集是(0,5),且f(x)在區(qū)間[-1,4]上的最大值是12.
(1)求的解析式;
(2)是否存在自然數(shù)m,使得方程=0在區(qū)間(m,m+1)內(nèi)有且只有兩個不等的實數(shù)根?若存在,求出所有m的值;若不存在,請說明理由.
(1)
(2)存在唯一的自然數(shù)m=3,使得方程在區(qū)間(m,m+1)內(nèi)有且只有兩個不等的實數(shù)根.

試題分析:(1)為求函數(shù)的解析式,可根據(jù)是二次函數(shù),且的解集是(0,5),
設(shè)出應(yīng)用“待定系數(shù)法”.
(2)首先注意到方程=0等價于方程,從而,可通過研究函數(shù)
達到解題目的.
具體地,通過“求導(dǎo)數(shù)、求駐點、討論導(dǎo)數(shù)的正負、確定函數(shù)的單調(diào)區(qū)間”,認識方程的根分布情況.
試題解析:
(1)∵是二次函數(shù),且的解集是(0,5),
∴可設(shè)
在區(qū)間[-1,4]上的最大值是.
由已知,得                   5分
(2)方程=0等價于方程
設(shè)
.                          7分
當(dāng)x∈時,,因此在此區(qū)間上是減少的;
當(dāng)x∈時,,因此是在此區(qū)間上是增加的.
∵h(3)=1>0,h<0,h(4)=5>0,               10分
∴方程=0在區(qū)間,內(nèi)分別有唯一實數(shù)根,而在區(qū)間(0,3),(4,+∞)內(nèi)沒有實數(shù)根,
∴存在唯一的自然數(shù)m=3,使得方程在區(qū)間(m,m+1)內(nèi)有且只有兩個不等的實數(shù)根.                                       12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)設(shè),證明:對任意,總存在,使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),且在時函數(shù)取得極值.
(1)求的單調(diào)增區(qū)間;
(2)若,
(Ⅰ)證明:當(dāng)時,的圖象恒在的上方;
(Ⅱ)證明不等式恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)為自然對數(shù)的底,
(1)求的最值;
(2)若關(guān)于方程有兩個不同解,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知實數(shù)函數(shù)為自然對數(shù)的底數(shù)).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間及最小值;
(Ⅱ)若對任意的恒成立,求實數(shù)的值;
(Ⅲ)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù),其對應(yīng)的圖像為曲線C;若曲線C過,且在點處的切斜線率
(1)求函數(shù)的解析式
(2)證明不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù).
(1)求的單調(diào)區(qū)間及最大值;
(2)恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),.
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè),,,為函數(shù)的圖象上任意不同兩點,若過,兩點的直線的斜率恒大于,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法不正確的是(     )
A.方程有實數(shù)根函數(shù)有零點
B.函數(shù)有兩個零點
C.單調(diào)函數(shù)至多有一個零點
D.函數(shù)在區(qū)間上滿足,則函數(shù)在區(qū)間內(nèi)有零點

查看答案和解析>>

同步練習(xí)冊答案
閸忥拷 闂傦拷