已知點(diǎn)A(1,3),B(4,-1),則與向量
AB
方向相反的單位向量為( 。
A、(
3
5
,-
4
5
B、(-
3
5
,
4
5
C、(
4
5
,-
3
5
D、(-
4
5
3
5
考點(diǎn):平面向量共線(平行)的坐標(biāo)表示
專題:平面向量及應(yīng)用
分析:由給出的兩點(diǎn)的坐標(biāo),求出向量 
AB
的坐標(biāo),然后除以|
AB
|后加負(fù)號(hào)即可.
解答: 解:因?yàn)锳(1,3),B(4,-1),所以
AB
=
OB
-
OA
=(4,-1)-(1,3)=(3,-4),
所以|
AB
|=
32+(-4)2
=5,
所以與向量
AB
方向相反的單位向量坐標(biāo)為-
AB
|
AB
|
=-
1
5
(3,-4)
=(-
3
5
,
4
5
).
故選:B.
點(diǎn)評(píng):本題考查了單位向量的求解方法,與向量 
AB
同向的單位向量為-
AB
|
AB
|
.是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的一元二次方程x2-(m+1)x-m=0有兩個(gè)異號(hào)實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是( 。
A、m<0
B、m>0
C、-1<m<1
D、m≥1或m≤-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M、N是兩個(gè)非空集合,且M={a|a∈N},則M、N 間的關(guān)系為( 。
A、M=NB、M是N的真子集
C、M是N的子集D、M∈N

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若0<b<a<1,則在ab,ba,aa,bb中最大值是( 。
A、ba
B、aa
C、ab
D、bb

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若
OB
=a100
OA
+a101
OC
,且A、B、C三點(diǎn)共線(該直線不過(guò)點(diǎn)O),則S200等于( 。
A、100B、101
C、200D、201

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=x2在區(qū)間[1,2]上的平均變化率為(  )
A、4B、5C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-
2
x
,g(x)=a(2-lnx).若曲線y=f(x)與曲線y=g(x)在x=1處的切線斜率相同,求a的值,并判斷兩條切線是否為同一條直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱柱ABCD-A1B1C1D1中,底面ABCD和側(cè)面BCC1B1都是矩形,E是CD的中點(diǎn),D1E⊥CD,AB=2BC=2.
(1)求證:BC⊥D1E;
(2)若AA1=
2
,求三棱錐D1-B1CB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=aln(x+1)+
1
x+1
+3x-1.
(1)若x≥0時(shí),f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍;
(2)求證:
2
12-1
+
3
22-1
+
4
32-1
+…+
n+1
n2-1
1
4
ln(2n+1)對(duì)一切正整數(shù)n均成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案