【題目】已知函數(shù),其中.

(1)試討論函數(shù)的單調(diào)性及最值;

(2)若函數(shù)不存在零點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】(1)見(jiàn)解析;(2)

【解析】試題分析:(1)討論函數(shù)單調(diào)性,先明確函數(shù)定義域然后求導(dǎo)解不等式即可,當(dāng)然要注意參數(shù)的討論對(duì)導(dǎo)函數(shù)符號(hào)判斷的影響;(2)函數(shù)不存在零點(diǎn),即函數(shù)的最大值恒小于零或者函數(shù)的最小值恒大于零,故先求出的最值然后解不等式即可.

(Ⅰ)由 得:

⑴當(dāng)時(shí), 單調(diào)遞增,

沒(méi)有最大值,也沒(méi)有最小值

⑵若

當(dāng)時(shí), , 單調(diào)遞增

當(dāng)時(shí), , 單調(diào)遞減,

所以當(dāng)時(shí), 取到最大值

沒(méi)有最小值

(Ⅱ)

當(dāng) 時(shí), , 單調(diào)遞增,

當(dāng)時(shí), , 單調(diào)遞減,

所以當(dāng)時(shí) , 取到最大值,

時(shí), 有 ,

所以要使沒(méi)有零點(diǎn),

只需

所以實(shí)數(shù)的取值范圍是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】世界那么大,我想去看看,處在具有時(shí)尚文化代表的大學(xué)生們旅游動(dòng)機(jī)強(qiáng)烈,旅游可支配收入日益增多,可見(jiàn)大學(xué)生旅游是一個(gè)巨大的市場(chǎng).為了解大學(xué)生每年旅游消費(fèi)支出(單位:百元)的情況,相關(guān)部門隨機(jī)抽取了某大學(xué)的名學(xué)生進(jìn)行問(wèn)卷調(diào)查,并把所得數(shù)據(jù)列成如下所示的頻數(shù)分布表:

組別

頻數(shù)

(Ⅰ)求所得樣本的中位數(shù)(精確到百元);

(Ⅱ)根據(jù)樣本數(shù)據(jù),可近似地認(rèn)為學(xué)生的旅游費(fèi)用支出服從正態(tài)分布,若該所大學(xué)共有學(xué)生人,試估計(jì)有多少位同學(xué)旅游費(fèi)用支出在元以上;

(Ⅲ)已知樣本數(shù)據(jù)中旅游費(fèi)用支出在范圍內(nèi)的名學(xué)生中有名女生, 名男生,現(xiàn)想選其中名學(xué)生回訪,記選出的男生人數(shù)為,求的分布列與數(shù)學(xué)期望.

附:若,則,

, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知邊長(zhǎng)為的正方形與菱形所在平面互相垂直, 中點(diǎn).

(1)求證: 平面;

(2)若,求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲、乙兩個(gè)桔柚(球形水果)種植基地,已知所有采摘的桔柚的直徑都在范圍內(nèi)(單位:毫米,以下同),按規(guī)定直徑在內(nèi)為優(yōu)質(zhì)品,現(xiàn)從甲、乙兩基地所采摘的桔柚中各隨機(jī)抽取500個(gè),測(cè)量這些桔柚的直徑,所得數(shù)據(jù)整理如下:

(1)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并回答是否有以上的把握認(rèn)為

“桔柚直徑與所在基地有關(guān)”?

(2)求優(yōu)質(zhì)品率較高的基地的500個(gè)桔柚直徑的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表):

(3)經(jīng)計(jì)算,甲基地的500個(gè)桔柚直徑的樣本方差,乙基地的500個(gè)桔柚直徑的樣本方差,,并且可認(rèn)為優(yōu)質(zhì)品率較高的基地采摘的桔柚直徑服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.由優(yōu)質(zhì)品率較高的種植基地的抽樣數(shù)據(jù),估計(jì)該基地采摘的桔柚中,直徑不低于86.78亳米的桔柚在總體中所占的比例.

附:,.

,則.

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018海南高三階段性測(cè)試(二模)如圖,在直三棱柱中, ,點(diǎn)的中點(diǎn),點(diǎn)上一動(dòng)點(diǎn).

I)是否存在一點(diǎn),使得線段平面?若存在,指出點(diǎn)的位置,若不存在,請(qǐng)說(shuō)明理由.

II)若點(diǎn)的中點(diǎn)且,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,點(diǎn)在傾斜角為的直線上,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的方程為.

(1)寫(xiě)出的參數(shù)方程及的直角坐標(biāo)方程;

(2)設(shè)相交于兩點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】依據(jù)某地某條河流8月份的水文觀測(cè)點(diǎn)的歷史統(tǒng)計(jì)數(shù)據(jù)所繪制的頻率分布直方圖如圖(甲)所示;依據(jù)當(dāng)?shù)氐牡刭|(zhì)構(gòu)造,得到水位與災(zāi)害等級(jí)的頻率分布條形圖如圖(乙)所示.

試估計(jì)該河流在8月份水位的中位數(shù);

1)以此頻率作為概率,試估計(jì)該河流在8月份發(fā)生1級(jí)災(zāi)害的概率;

2)該河流域某企業(yè),在8月份,若沒(méi)受1、2級(jí)災(zāi)害影響,利潤(rùn)為500萬(wàn)元;若受1級(jí)災(zāi)害影響,則虧損100萬(wàn)元;若受2級(jí)災(zāi)害影響則虧損1000萬(wàn)元.

現(xiàn)此企業(yè)有如下三種應(yīng)對(duì)方案:

方案

防控等級(jí)

費(fèi)用(單位:萬(wàn)元)

方案一

無(wú)措施

0

方案二

防控1級(jí)災(zāi)害

40

方案三

防控2級(jí)災(zāi)害

100

試問(wèn),如僅從利潤(rùn)考慮,該企業(yè)應(yīng)選擇這三種方案中的哪種方案?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為提高黔東南州的整體旅游服務(wù)質(zhì)量,州旅游局舉辦了黔東南州旅游知識(shí)競(jìng)賽,參賽單位為本州內(nèi)各旅游協(xié)會(huì),參賽選手為持證導(dǎo)游.現(xiàn)有來(lái)自甲旅游協(xié)會(huì)的導(dǎo)游3名,其中高級(jí)導(dǎo)游2名;乙旅游協(xié)會(huì)的導(dǎo)游3名,其中高級(jí)導(dǎo)游1名.從這6名導(dǎo)游中隨機(jī)選擇2人 參加比賽.

(Ⅰ)求選出的2人都是高級(jí)導(dǎo)游的概率;

(Ⅱ)為了進(jìn)一步了解各旅游協(xié)會(huì)每年對(duì)本地經(jīng)濟(jì)收入的貢獻(xiàn)情況,經(jīng)多次統(tǒng)計(jì)得到,甲旅游協(xié)會(huì)對(duì)本地經(jīng)濟(jì)收入的貢獻(xiàn)范圍是(單位:萬(wàn)元),乙旅游協(xié)會(huì)對(duì)本地經(jīng)濟(jì)收入的貢獻(xiàn)范圍是(單位:萬(wàn)元),求甲旅游協(xié)會(huì)對(duì)本地經(jīng)濟(jì)收入的貢獻(xiàn)不低于乙旅游協(xié)會(huì)對(duì)本地經(jīng)濟(jì)收入的貢獻(xiàn)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案