【題目】選修4-5:不等式選講
已知函數(shù)f(x)=|x+2|﹣2|x﹣1|.
(Ⅰ)求不等式f(x)≥﹣2的解集M;
(Ⅱ)對任意x∈[a,+∞],都有f(x)≤x﹣a成立,求實數(shù)a的取值范圍.

【答案】(Ⅰ)解:∵函數(shù)f(x)=|x+2|﹣2|x﹣1|,∴不等式f(x)≥﹣2即 ①,或 ②,或 ③.

解①求得x∈,解②求得﹣ ≤x<1,解③求得1≤x≤6,

綜上,不等式的解集為M={x|﹣ ≤x≤6}.

(Ⅱ)對任意x∈[a,+∞],都有f(x)≤x﹣a成立,函數(shù)f(x)= 的圖象如圖所示:

令y=x﹣a,則此直線斜率為1,﹣a表示直線的縱截距,故函數(shù)f(x)的圖象在直線y=x﹣a的下方或在直線上.

當直線過(1,3)點時,﹣a=2,即a=﹣2;

∴當﹣a≥2,即a≤﹣2時,條件成立;

當﹣a<2,即a>﹣2時,令﹣x+4=x﹣a,得x=2+ ,

∴a≥2+ ,即a≥4時,條件成立,

綜上a≤﹣2或a≥4.


【解析】(Ⅰ)通過對x≤﹣2,﹣2<x<1與x≥1三類討論,去掉絕對值符號,解相應(yīng)的一次不等式,最后取其并集即可;(Ⅱ)在坐標系中,作出f(x)= 的圖象,對任意x∈[a,+∞),都有f(x)≤x﹣a成立,分﹣a≥2與﹣a<2討論,即可求得實數(shù)a的取值范圍.
【考點精析】本題主要考查了絕對值不等式的解法的相關(guān)知識點,需要掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標系xOy中,已知橢圓 的左焦點為F,離心率為 ,過點F且垂直于長軸的弦長為
(I)求橢圓C的標準方程;
(Ⅱ)設(shè)點A,B分別是橢圓的左、右頂點,若過點P(﹣2,0)的直線與橢圓相交于不同兩點M,N.
(i)求證:∠AFM=∠BFN;
(ii)求△MNF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣3x,函數(shù)f(x)的圖象在x=0處的切線方程是;函數(shù)f(x)在區(qū)間[0,2]內(nèi)的值域是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中心在原點,焦點在x軸上的橢圓的一個焦點為( ,0),(1, )是橢圓上的一個點.
(1)求橢圓的標準方程;
(2)設(shè)橢圓的上、下頂點分別為A,B,P(x0 , y0)(x0≠0)是橢圓上異于A,B的任意一點,PQ⊥y軸,Q為垂足,M為線段PQ中點,直線AM交直線l:y=﹣1于點C,N為線段BC的中點,如果△MON的面積為 ,求y0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應(yīng)號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù)(xi , yi)(i=1,2,…,6),如表所示:

試銷單價x(元)

4

5

6

7

8

9

產(chǎn)品銷量y(件)

q

84

83

80

75

68

已知 =80.
(Ⅰ)求出q的值;
(Ⅱ)已知變量x,y具有線性相關(guān)關(guān)系,求產(chǎn)品銷量y(件)關(guān)于試銷單價x(元)的線性回歸方程 ;可供選擇的數(shù)據(jù): ,
(Ⅲ)用 表示用(Ⅱ)中所求的線性回歸方程得到的與xi對應(yīng)的產(chǎn)品銷量的估計值.當銷售數(shù)據(jù)(xi , yi)對應(yīng)的殘差的絕對值 時,則將銷售數(shù)據(jù)(xi , yi)稱為一個“好數(shù)據(jù)”.現(xiàn)從6個銷售數(shù)據(jù)中任取3個,求“好數(shù)據(jù)”個數(shù)ξ的分布列和數(shù)學(xué)期望E(ξ).
(參考公式:線性回歸方程中 , 的最小二乘估計分別為 ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在(﹣1,+∞)上的單調(diào)函數(shù)f(x),對于任意的x∈(﹣1,+∞),f[f(x)﹣xex]=0恒成立,則方程f(x)﹣f′(x)=x的解所在的區(qū)間是(
A.(﹣1,﹣
B.(0,
C.(﹣ ,0)
D.(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|2x+ |+a|x﹣ |.
(Ⅰ)當a=﹣1時,解不等式f(x)≤3x;
(Ⅱ)當a=2時,若關(guān)于x的不等式2f(x)+1<|1﹣b|的解集為空集,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的右焦點 ,且經(jīng)過點 ,點M是x軸上的一點,過點M的直線l與橢圓C交于A,B兩點(點A在x軸的上方)
(1)求橢圓C的方程;
(2)若|AM|=2|MB|,且直線l與圓 相切于點N,求|MN|的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+ x2﹣(1+a)x.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≥0對定義域中的任意x恒成立,求實數(shù)a的取值范圍;
(3)證明:對任意正整數(shù)m,n,不等式 + +…+ 恒成立.

查看答案和解析>>

同步練習(xí)冊答案