設(shè)A、B、P是雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)上不同的三個(gè)點(diǎn),且A、B連線經(jīng)過坐標(biāo)原點(diǎn),若直線PA、PB的斜率之積為
1
4
,則該雙曲線的離心率為(  )
A、
5
2
B、
6
2
C、
2
D、
15
3
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:由于A,B連線經(jīng)過坐標(biāo)原點(diǎn),所以A,B一定關(guān)于原點(diǎn)對(duì)稱,利用直線PA,PB的斜率乘積,可尋求幾何量之間的關(guān)系,從而可求離心率.
解答: 解:根據(jù)雙曲線的對(duì)稱性可知A,B關(guān)于原點(diǎn)對(duì)稱,
設(shè)A(x1,y1),B(-x1,-y1),P(x,y),
x12
a2
-
y12
b2
=1
,
x2
a2
-
y2
b2
=1

∴kPA•kPB=
y1-y
x1-x
-y1-y
-x1-x
=
b2
a2
=
1
4
,
∴該雙曲線的離心率e=
1+
b2
a2
=
5
2

故選:A.
點(diǎn)評(píng):本題主要考查雙曲線的幾何性質(zhì),考查點(diǎn)差法,關(guān)鍵是設(shè)點(diǎn)代入化簡(jiǎn),應(yīng)注意雙曲線幾何量之間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

從單詞“equation”中選取5個(gè)不同的字母排成一排,含有“qu”(其中“qu”相連且順序不變)的不同排列共有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以正△ABC的頂點(diǎn)A、B為焦點(diǎn)的雙曲線恰好平分邊AC、BC,則雙曲線的離心率為(  )
A、
3
-1
B、2
C、
3
+1
D、2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷下列命題的真假,其中為真命題的是( 。
A、?x∈R,x2+1=0
B、?x∈R,x2+1=0
C、?x∈R,sinx<tanx
D、?x∈R,sinx<tanx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,梯形ABCD中,E是DC延長(zhǎng)線上一點(diǎn),AE分別交BD于G,交BC于F.則下列結(jié)論:
EC
CD
=
EF
AF
;②
FG
AG
=
BG
GD
;③
AE
AG
=
BD
DG
;④
AF
CD
=
AE
DE
,其中正確的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i為虛數(shù)單位,則復(fù)數(shù)
2-i
1+i
在復(fù)平面上所對(duì)應(yīng)的點(diǎn)在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x+
a
x
(a為常數(shù))的圖象過點(diǎn)(2,0),
(Ⅰ)求a的值并判斷f(x)的奇偶性;
(Ⅱ)函數(shù)g(x)=lg[f(x)+2x-m]在區(qū)間[2,3]上有意義,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是雙曲線
x2
4a2
-
y2
a2
=1上的一點(diǎn)(a>0),以點(diǎn)P及雙曲線兩焦點(diǎn)F1、F2為頂點(diǎn)的三角形的面積等于1,且∠F1PF2=90°,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x+y+z=0,求證:6(x3+y3+z32≤(x2+y2+z23

查看答案和解析>>

同步練習(xí)冊(cè)答案