在四棱錐中,⊥平面,,,,,是的中點(diǎn).
(Ⅰ)證明:⊥平面;
(Ⅱ)若直線與平面所成的角和與平面所成的角相等,求四棱錐的體積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
下列三個(gè)圖中,左邊是一個(gè)正方體截去一個(gè)角后所得多面體的直觀圖。右邊兩個(gè)是正視圖和側(cè)視圖.
(1)請(qǐng)?jiān)谡晥D的下方,按照畫(huà)三視圖的要求畫(huà)出該多面體的俯視圖(不要求敘述作圖過(guò)程);
(2)求該多面體的體積(尺寸如圖).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分12分)已知棱長(zhǎng)為的正方體中,M,N分別是棱CD,AD的中點(diǎn)。(1)求證:四邊形是梯形;(2)求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
如圖,四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為直角梯形,AB∥CD,BA⊥AD,且CD=2AB.
(1)若AB=AD=,直線PB與CD所成角為,
①求四棱錐P-ABCD的體積;
②求二面角P-CD-B的大。
(2)若E為線段PC上一點(diǎn),試確定E點(diǎn)的位置,使得平面EBD垂直于平面ABCD,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知△BCD中,∠BCD=90°,AB⊥平面BCD,E、F分別是AC、AD上的動(dòng)點(diǎn),且
求證:不論λ為何值,總有平面BEF⊥平面ABC
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)如圖,在四棱錐中,平面平面,為等邊三角形,底面為菱形,,為的中點(diǎn),。
(1)求證:平面;
(2) 求四棱錐的體積
(3)在線段上是否存在點(diǎn),使平面; 若存在,求出的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(13分)如圖,四棱錐的底面是正方形,,點(diǎn)在棱上.
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)且為的中點(diǎn)時(shí),求四面體體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
下面三個(gè)圖中,右面的是一個(gè)長(zhǎng)方體截去一個(gè)角所得多面體的直觀圖,它的正視圖和側(cè)視圖在左面畫(huà)出(單位:cm).
(1)在正視圖下面,按照畫(huà)三視圖的要求畫(huà)出該多面體的俯視圖;
(2)按照給出的尺寸,求該多面體的體積;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
下圖是一幾何體的直觀圖、正(主)視圖、側(cè)(左)視圖、俯視圖
(1)若為的中點(diǎn),求證:平面;
(2)求平面與平面所成的二面角(銳角)的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com