精英家教網 > 高中數學 > 題目詳情
已知,如圖四棱錐P-ABCD中,底面ABCD是平行四邊形,PG⊥平面ABCD,垂足為G,G在線段AD上,且PG=4,AG=
1
3
GD
,BG⊥GC,BG=GC=2,E是BC的中點.
(1)求異面直線GE與PC所成角的余弦值;
(2)求DG與平面PBG所成角的大。
(1)如圖所示,以G點為原點建立空間直角坐標系G-xyz,則B(2,0,0),C(0,2,0),P(0,0,4)
故E(1,1,0),∴
GE
=(1,1,0),
PC
=(0,2,-4)
,
cos<
GE
PC
>=
GE
PC
|
GE
|•|
PC
|
=
2
2
20
=
10
10
,
∴異面直線GE與PC所成角的余弦值為
10
10
;---(6分)
(2)
GD
=
3
4
BC
=(-
3
2
,
3
2
,0),
GB
=(2,0,0),
GP
=(0,0,4)

設平面PBG的一個法向量為
n
=(x,y,z),則
2x=0
4z=0
,可得
n
=(0,1,0)
設DG與平面PBG所成角為α,則sinα=|cos
GD
,
n
|=
3
2
9
2
•1
=
2
2
,
∴α=45°,即DG與平面PBG所成角為45°.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:填空題

異面直線a,b所成的角為60°,過空間點P作線c與它們都成60°,則線c的條數為______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知正△ABC的頂點A在平面α上,頂點B、C在平面α的同一側,D為BC的中點,若△ABC在平面α上的投影是以A為直角頂點的三角形,則直線AD與平面α所成角的正弦值的范圍為______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,正三棱柱ABC-A1B1C1中,AB=AA1,則AC1與平面BB1C1C所成的角的正弦值為(  )
A.
2
2
B.
15
5
C.
6
4
D.
6
3

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖,已知三棱柱ABC-A1B1C1的側棱長與底面邊長都等于1,A1在底面ABC上的射影D為BC的中點,則側棱AA1與底面ABC所成角的大小為______,此三棱柱的體積為______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,三棱錐P-ABC中,∠ACB=90°,PA⊥底面ABC.
(I)求證:平面PAC⊥平面PBC;
(II)若AC=BC=PA,M是PB的中點,求AM與平面PBC所成角的正切值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知正方體ABCD-A1B1C1D1,O是底ABCD對角線的交點.求證:
(1)C1O面A1B1D1;
(2)A1C⊥面AB1D1;
(3)求直線AC與平面AB1D1所成角的正切值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖所示,在正方體ABCD-A1B1C1D1中,E為DD1上的點、F為DB的中點.
(Ⅰ)求直線B1F與平面CDD1C1所成角的正弦值;
(Ⅱ)若直線EF平面ABC1D1,試確定點E的位置.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖多面體,它的正視圖為直角三角形,側視圖為矩形,俯視圖為直角梯形(尺寸如圖所示).
(Ⅰ)求證:AE平面DCF;
(Ⅱ)當AB的長為何值時,二面角A-EF-C的大小為60°?

查看答案和解析>>

同步練習冊答案