已知cos2θ=
3
5
,則sin4θ-cos4θ的值為( 。
A、
4
5
B、
3
5
C、-
3
5
D、-
4
5
考點:同角三角函數(shù)基本關(guān)系的運用,二倍角的余弦
專題:三角函數(shù)的求值
分析:已知等式左邊利用二倍角的余弦函數(shù)公式化簡,原式利用平方差公式及同角三角函數(shù)間的基本關(guān)系化簡,將得出關(guān)系式代入計算即可求出值.
解答: 解:∵cos2θ=cos2θ-sin2θ=
3
5
,
∴sin4θ-cos4θ=(sin2θ-cos2θ)(sin2θ+cos2θ)=sin2θ-cos2θ=-(cos2θ-sin2θ)=-
3
5
,
故選:C.
點評:此題考查了同角三角函數(shù)基本關(guān)系的運用,以及二倍角的余弦函數(shù)公式,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
(1)函數(shù)y=
1
x
+x(x<0)的值域是(-∞,-2];
(2)函數(shù)y=x2+2+
1
x2+2
最小值是2;
(3)若a,b同號且a≠b,則
a
b
+
b
a
≥2.
其中正確的命題是( 。
A、(1)(2)(3)
B、(1)(2)
C、(2)(3)
D、(1)(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3sin(ωx-
π
6
)(ω>0)和g(x)=3cos(2x+φ)(|φ|<π)的圖象的對稱中心完全相同,則φ的值為( 。
A、
π
3
B、-
3
C、
π
3
或-
3
D、-
π
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角α的終邊上一點P(1+cos40°,sin40°),則銳角α=( 。
A、80°B、70°
C、20°D、10°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下三個命題:
①已知P(m,4)是橢圓
x2
a2
+
y2
b2
=1(a>b>0)上的一點,F(xiàn)1、F2是左、右兩個焦點,若△PF1F2的內(nèi)切圓的半徑為
3
2
,則此橢圓的離心率e=
4
5
;
②過雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點F作斜率為
3
的直線交C于A,B兩點,若
AF
=4
FB
,則該雙曲線的離心率e=
6
5
;
③已知F1(-2,0)、F2(2,0),P是直線x=-1上一動點,若以F1、F2為焦點且過點P的雙曲線的離心率為e,則e的取值范圍是[2,+∞).
其中真命題的個數(shù)為(  )
A、3個B、2個C、1個D、0個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知1,a1,a2,4成等差數(shù)列,1,b1,b2,b3,4成等比數(shù)列,則
a1+a2
b2
等于(  )
A、
1
2
B、2
C、
5
2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果平面外一條直線上有兩點到這個平面的距離相等,則這條直線和這個平面的位置關(guān)系是( 。
A、平行B、相交
C、平行或相交D、不可能垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ln(x+1)-
2
x
的零點在區(qū)間(k,k+1)(k∈z)上,則k的值為( 。
A、-1B、1
C、-1或2D、-1或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知e是自然對數(shù)的底數(shù),函數(shù)f(x)=
ax2
ex
(a∈R,且a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)a>0時,函數(shù)f(x)的極大值為
1
e
,求a的值.

查看答案和解析>>

同步練習(xí)冊答案