【題目】近年來,我國電子商務(wù)行業(yè)迎來了蓬勃發(fā)展的新機(jī)遇,但是電子商務(wù)行業(yè)由于缺乏監(jiān)管,服務(wù)質(zhì)量有待提高.某部門為了對本地的電商行業(yè)進(jìn)行有效監(jiān)管,調(diào)查了甲、乙兩家電商的某種同類產(chǎn)品連續(xù)十天的銷售額(單位:萬元),得到如下莖葉圖:
甲 | 乙 | |||||
7 | 5 | 10 | 7 | |||
9 | 5 | 3 | 11 | 5 | 7 | 8 |
8 | 6 | 12 | 3 | 5 | ||
4 | 2 | 13 | 2 | 6 | 9 | |
1 | 14 | 8 |
(1)根據(jù)莖葉圖判斷甲、乙兩家電商對這種產(chǎn)品的銷售誰更穩(wěn)定些?
(2)為了綜合評估本地電商的銷售情況,從甲、乙兩家電商十天的銷售數(shù)據(jù)中各抽取兩天的銷售數(shù)據(jù),其中銷售額不低于120萬元的天數(shù)分別記為,令,求隨機(jī)變量Y的分布列和數(shù)學(xué)期望.
【答案】甲電商對這種產(chǎn)品的銷售誰更穩(wěn)定. (2) 分布列見解析,數(shù)學(xué)期望為.
【解析】
(1)先分別求出甲、乙電商連續(xù)十天的銷售額的平均數(shù),再求出其方差,從而作出判斷.
(2)根據(jù)意義甲電商對這種產(chǎn)品的銷售額不低于120萬元的天數(shù)有5天,乙電商對這種產(chǎn)品的銷售額不低于120萬元的天數(shù)有6天. 的所有可能取值為0,1,2,的所有可能取值為0,1,2,由,所以隨機(jī)變量Y的所有可能取值為0,1,2,3,4,然后分別求出概率得出分布列求出期望.
(1) 設(shè)甲、乙電商連續(xù)十天的銷售額的平均數(shù)分別為,方差分別為
(萬元)
(萬元)
由,所以甲電商對這種產(chǎn)品的銷售誰更穩(wěn)定.
(2)由題意的所有可能取值為0,1,2,的所有可能取值為0,1,2,
由,所以隨機(jī)變量Y的所有可能取值為0,1,2,3,4
其中甲電商對這種產(chǎn)品的銷售額不低于120萬元的天數(shù)有5天.
乙電商對這種產(chǎn)品的銷售額不低于120萬元的天數(shù)有6天.
則隨機(jī)變量Y的分布列為>
0 | 1 | 2 | 3 | 4 | |
則隨機(jī)變量Y的數(shù)學(xué)期望為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)求函數(shù)的圖象在處的切線方程;
(2)求證:方程有兩個(gè)實(shí)數(shù)根;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,將曲線(為參數(shù)) 上任意一點(diǎn)經(jīng)過伸縮變換后得到曲線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線交于兩點(diǎn),,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列為正項(xiàng)等比數(shù)列,為的前項(xiàng)和,若,.
(1)求數(shù)列的通項(xiàng)公式;
(2)從三個(gè)條件:①;②;③中任選一個(gè)作為已知條件,求數(shù)列的前項(xiàng)和.
注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右頂點(diǎn)分別為C、D,且過點(diǎn),P是橢圓上異于C、D的任意一點(diǎn),直線PC,PD的斜率之積為.
(1)求橢圓的方程;
(2)O為坐標(biāo)原點(diǎn),設(shè)直線CP交定直線x = m于點(diǎn)M,當(dāng)m為何值時(shí),為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在全民抗擊新冠肺炎疫情期間,北京市開展了“停課不停學(xué)”活動(dòng),此活動(dòng)為學(xué)生提供了多種網(wǎng)絡(luò)課程資源以供選擇使用.活動(dòng)開展一個(gè)月后,某學(xué)校隨機(jī)抽取了高三年級的甲、乙兩個(gè)班級進(jìn)行網(wǎng)絡(luò)問卷調(diào)查,統(tǒng)計(jì)學(xué)生每天的學(xué)習(xí)時(shí)間,將樣本數(shù)據(jù)分成五組,并整理得到如下頻率分布直方圖:
(1)已知該校高三年級共有600名學(xué)生,根據(jù)甲班的統(tǒng)計(jì)數(shù)據(jù),估計(jì)該校高三年級每天學(xué)習(xí)時(shí)間達(dá)到5小時(shí)及以上的學(xué)生人數(shù);
(2)已知這兩個(gè)班級各有40名學(xué)生,從甲、乙兩個(gè)班級每天學(xué)習(xí)時(shí)間不足4小時(shí)的學(xué)生中隨機(jī)抽取3人,記從甲班抽到的學(xué)生人數(shù)為,求的分布列和數(shù)學(xué)期望;
(3)記甲、乙兩個(gè)班級學(xué)生每天學(xué)習(xí)時(shí)間的方差分別為,,試比較與的大小.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的最小值;
(2)若,討論的單調(diào)性;
(3)若,為在上的最小值,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在區(qū)間單調(diào)遞增,下述三個(gè)結(jié)論:①的取值范圍是;②在存在零點(diǎn);③在至多有4個(gè)極值點(diǎn).其中所有正確結(jié)論的編號是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面為平行四邊形,底面,,,,.
(Ⅰ)求證:平面平面;
(Ⅱ)在側(cè)棱上是否存在點(diǎn)E,使與底面所成的角為45°?若存在,求的值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com