15.將6位志愿者分成4組,每組至少1人,至多2人分赴第五屆亞歐博覽會(huì)的四個(gè)不同展區(qū)服務(wù),不同的分配方案有1080種(用數(shù)字作答).

分析 根據(jù)題意,先將6人按2,2,1,1分成4組,由分組公式可得分組情況數(shù)目,再對(duì)應(yīng)分配到四個(gè)不同展區(qū),有A44種方法,進(jìn)而由分步計(jì)數(shù)原理計(jì)算可得答案.

解答 解:根據(jù)題意,將6位志愿者分成4組,每組至少1人,至多2人,需要將6人分成2,2,1,1的四組,
有$\frac{{C}_{6}^{2}{C}_{4}^{2}{C}_{2}^{1}{C}_{1}^{1}}{{A}_{2}^{2}{A}_{2}^{2}}$=45種分組方法;
再將分好的4組對(duì)應(yīng)分配到四個(gè)不同展區(qū),有A44=24種方法,
則有45×24=1080種不同的分配方案;
故答案為:1080.

點(diǎn)評(píng) 本題考查排列、組合的應(yīng)用,注意要先對(duì)6人分組,涉及了平均分組與不平均分組公式,要用對(duì)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在三棱錐S-ABC中,底面ABC為直角三角形,且∠ABC=90°,SA⊥底面ABC,且SA=AB,點(diǎn)M是SB的中點(diǎn),AN⊥SC且交SC于點(diǎn)N.
(1)求證:SC⊥平面AMN;
(2)當(dāng)AB=BC時(shí),求二面角N-MA-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若三點(diǎn) A(-2,12),B(1,3),C(m,-6)共線,則m的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)y=x2-2x-m在[0,1]上的最大值與最小值的和為-3,則函數(shù)y=-x2+mx在[0,1]上的最小值是0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=5+x+2sinx,x∈(0,π)的單調(diào)遞增區(qū)間是(0,$\frac{2π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖所示的“相鄰塔”形立體建筑,已知P-OAC和Q-OBD是邊長分別為a和$\frac{m}{a}({m是常數(shù)})$的兩個(gè)正四面體,底面中AB與CD交于點(diǎn)O,試求出塔尖P,Q之間的距離關(guān)于邊長a的函數(shù),并求出a為多少時(shí),塔尖P,Q之間的距離最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.?dāng)?shù)列{$\frac{1}{{2}^{n}}$+1}的前n項(xiàng)和公式Sn=( 。
A.$\frac{1}{{2}^{n}}$B.n+$\frac{1}{{2}^{n}}$C.n-$\frac{1}{{2}^{n}}$+1D.n2-2n-$\frac{1}{{2}^{n}}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某班級(jí)共49人,在必修1的學(xué)分考試中,有7人沒通過,若用A表示參加補(bǔ)考這一事件,則下列關(guān)于事件A的說法正確的是(  )
A.概率為$\frac{1}{7}$B.頻率為$\frac{1}{7}$C.頻率為7D.概率接近$\frac{1}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若$\frac{cos2θ}{sin(θ+\frac{π}{4})}$=-$\frac{\sqrt{2}}{2}$,則log${\;}_{\sqrt{2}}$(sinθ-cosθ)的值為( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案