假設(shè)關(guān)于某設(shè)備使用年限x(年)和所支出的維修費用y(萬元)有如下統(tǒng)計資料:
x 2 3 4 5 6
y 2.2 3.8 5.5 6.5 7.0
b=
n
ii=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
若由資料知,y對x呈線性相關(guān)關(guān)系,試求:
(1)回歸直線方程;
(2)估計使用年限為10年時,維修費用約是多少?,
a
=
.
y
-b
.
x
分析:(1)根據(jù)所給的數(shù)據(jù),做出變量x,y的平均數(shù),根據(jù)最小二乘法做出線性回歸方程的系數(shù)b,在根據(jù)樣本中心點一定在線性回歸方程上,求出a的值,從而得到回歸直線方程;
(2)根據(jù)第一問做出的線性回歸方程,當(dāng)自變量為10時,代入線性回歸方程,求出維修費用,這是一個預(yù)報值.
解答:解:(1)由題意知
.
x
=
2+3+4+5+6
5
=4,
.
y
=
2.2+3.8+5.5+6.5+7.0
6
=5
b=
2×2.2+3×3.8+4×5.5+5×6.5+6×7-5×4×5
4+9+16+25+36-5×16
=1.23,
a=5-4×1.23=0.08,
故線性回歸方程是
y
=1.23x+0.08.
(2)根據(jù)第一問知線性回歸方程是
y
=1.23x+0.08
當(dāng)自變量x=10時,預(yù)報維修費用是y=1.23×10+0.08=12.38
點評:本題考查線性回歸方程,考查最小二乘法,考查預(yù)報值的求法,是一個新課標(biāo)中出現(xiàn)的新知識點,已經(jīng)在廣東的高考卷中出現(xiàn)過類似的題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

假設(shè)關(guān)于某設(shè)備使用年限x(年)和所支出的維修費用y(萬元)有如下統(tǒng)計資料:
2 3 4 5 6
y 2.2 3.8 5.5 6.5 7.0
若由資料知,y對x呈線性相關(guān)關(guān)系,試求:
(Ⅰ)請畫出上表數(shù)據(jù)的散點圖;
(Ⅱ)請根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程y=
b
x+
a
;
(Ⅲ)估計使用年限為10年時,維修費用約是多少?
(參考數(shù)據(jù):2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

假設(shè)關(guān)于某設(shè)備使用年限x(年)和所支出的維修費用y(萬元)有如下統(tǒng)計資料:
x 2 3 4 5 6
y 2.2 3.8 5.5 6.5 7.0
若由資料知,y對x呈線性相關(guān)關(guān)系,試求:
(1)回歸直線方程;
(2)估計使用年限為10年時,維修費用約是多少?
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
=
n
i=1
x
i
-n
.
x
.
y
n
i=1
x
i
2
-n
.
x
2

a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

假設(shè)關(guān)于某設(shè)備使用年限x(年)和所支出的維修費用y(萬元)有如下統(tǒng)計資料:
x 1 2 4 5
y 1 1.5 5.5 8
若由資料可知y對x呈線性相關(guān)關(guān)系,則y與x的線性回歸方程
y
=bx+a必過的點是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆河北省高二第一次月考文科數(shù)學(xué)試卷 題型:選擇題

假設(shè)關(guān)于某設(shè)備使用年限x(年)和所支出的維修費用y(萬元)有如下統(tǒng)計資料:

若由資料可知y對x呈線性相關(guān)關(guān)系,則y與x的線性回歸方程=bx+a必過的點是

A.(2,2)    B.(1,2)    C.(3,4)    D.(4,5)

 

查看答案和解析>>

同步練習(xí)冊答案