【題目】已知橢圓 的左頂點和上頂點分別為A、B,左、右焦點分別是F1 , F2 , 在線段AB上有且只有一個點P滿足PF1⊥PF2 , 則橢圓的離心率為( )
A.
B.
C.
D.
【答案】D
【解析】解:依題意,作圖如下:
由A(﹣a,0),B(0,b),F(xiàn)1(﹣c,0),F(xiàn)2(c,0),
可得直線AB的方程為: + =1,整理得:bx﹣ay+ab=0,
設直線AB上的點P(x,y),則bx=ay﹣ab,
x= y﹣a,
由PF1⊥PF2 ,
∴ =(﹣c﹣x,﹣y)(c﹣x,﹣y)=x2+y2﹣c2
=( y﹣a)2+y2﹣c2 ,
令f(y)=( y﹣a)2+y2﹣c2 ,
則f′(y)=2( y﹣a) +2y,
由f′(y)=0得:y= ,于是x=﹣ ,
∴ =(﹣ )2+( )2﹣c2=0,
整理得: =c2 , 又b2=a2﹣c2 , e2= ,
∴e4﹣3e2+1=0,
∴e2= ,又橢圓的離心率e∈(0,1),
∴e2= =( )2 ,
可得e= ,
故選:D.
科目:高中數學 來源: 題型:
【題目】若Ai(i=1,2,3,…,n)是△AOB所在平面內的點,且 = ,給出下列說法:
·(1)| |=| |=| |=…=| |
·(2)| |的最小值一定是| |
·(3)點A和點Ai一定共線
·(4)向量 及 在向量 方向上的投影必定相等
其中正確的個數是( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,有一塊半徑為2的半圓形紙片,計劃剪裁成等腰梯形ABCD的形狀,它的下底AB是⊙O的直徑,上底CD的端點在圓周上,設CD=2x,梯形ABCD的周長為y.
(1)求出y關于x的函數f(x)的解析式;
(2)求y的最大值,并指出相應的x值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】不等式2x2﹣x﹣3>0解集為( )
A.{x|﹣1<x< }??
B.{x|x> 或x<﹣1}??
C.{x|﹣ <x<1}??
D.{x|x>1或x<﹣ }
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若不等式x2﹣ax+b<0的解集為(1,2),則不等式 < 的解集為( )
A.( ,+∞)
B.(﹣∞,0)∪( ,+∞)
C.( ,+∞)
D.(﹣∞,0)∪( ,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,將曲線上的所有點橫坐標伸長為原來的倍,縱坐標伸長為原來的2倍后,得到曲線,在以為極點, 軸正半軸為極軸的極坐標系中,直線的極坐標方程是.
(1)寫出曲線的參數方程和直線的直角坐標方程;
(2)在曲線上求一點,使點到直線的距離最大,并求出此最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com