19.已知平面向量$\overrightarrow a$,$\overrightarrow b$滿足$\overrightarrow a•({\overrightarrow a+\overrightarrow b})=3$,且$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$,則向量$\overrightarrow a$與$\overrightarrow b$夾角的余弦值為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

分析 設向量$\overrightarrow a$、$\overrightarrow b$的夾角為θ,根據(jù)平面向量數(shù)量積的定義進行化簡即可求出結果.

解答 解:設向量$\overrightarrow a$、$\overrightarrow b$的夾角為θ,
由$\overrightarrow a•({\overrightarrow a+\overrightarrow b})=3$,且$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$,
得${\overrightarrow{a}}^{2}$+$\overrightarrow{a}$•$\overrightarrow$=3,
即22+2×1×cosθ=3,
解得cosθ=-$\frac{1}{2}$.
故選:D.

點評 本題考查了平面向量的數(shù)量積運算法則和夾角公式的應用問題,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)$f(x)=sin({2x+φ})({|φ|<\frac{π}{2}})$的圖象向左平移$\frac{π}{6}$個單位后關于y軸對稱,則函數(shù)f(x)的一個單調(diào)遞增區(qū)間是( 。
A.$[{-\frac{5π}{6},\frac{π}{12}}]$B.$[{-\frac{π}{3},\frac{π}{6}}]$C.$[{-\frac{π}{6},\frac{π}{3}}]$D.$[{\frac{π}{6},\frac{2π}{3}}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)f(x)在R上的導函數(shù)為f'(x),對于任意的實數(shù)x,都有f'(x)+2017<4034x,若f(t+1)<f(-t)+4034t+2017,則實數(shù)t的取值范圍是( 。
A.$({-\frac{1}{2},+∞})$B.$({-\frac{3}{2},+∞})$C.$({-∞,-\frac{1}{2}})$D.$({-∞,-\frac{3}{2}})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設函數(shù)f(x)=|x-2|+|x-a|,x∈R.
(Ⅰ)求證:當a=-1時,不等式lnf(x)>1成立;
(Ⅱ)關于x的不等式f(x)≥a在R上恒成立,求實數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知tanα=2,則$cos2α+sin({\frac{π}{2}+α})cos({\frac{3π}{2}-α})$=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.復數(shù)z=$\frac{2+i}{1-i}$(i為虛數(shù)單位)的共軛復數(shù)是$\frac{1}{2}-\frac{3}{2}i$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2x+1,x>0}\\{0,x=0}\\{2x-1,x<0}\end{array}\right.$,則不等式f(x2-2)+f(x)<0的解集為(-2,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,三棱柱ABC-A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=2,M、N分別是AB、A1C的中點.
(1)求證:MN∥平面BB1C1C;
(2)若平面CMN⊥平面B1MN,求直線AB與平面B1MN所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在等差數(shù)列{an}中,a2=1,a5=4.
(1)求數(shù)列{an}的通項公式an
(2)設${b_n}={2^{a_n}}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

同步練習冊答案