【題目】是異面直線,則以下四個命題:①存在分別經(jīng)過直線的兩個互相垂直的平面;②存在分別經(jīng)過直線的兩個平行平面;③經(jīng)過直線有且只有一個平面垂直于直線;④經(jīng)過直線有且只有一個平面平行于直線其中正確的個數(shù)有( )

A. B. C. D.

【答案】C

【解析】對于①,可以在兩個互相垂直的平面中,分別畫一條直線,當這兩條直線異面時,可判斷①正確;對于②,可在兩個平行平面中分別畫一條直線,當這兩條直線異面時,可判斷②正確;對于③,當這兩條直線不垂直時,不存在這樣的平面滿足題意,可判斷③鍺誤;對于④,假設過直線有兩個平面與直線平行,則面相交于直線,過直線做一平面與面相交于兩條直線都與直線平行,可得平行,所以假設不成立所以④正確,故選C.

【方法點晴】本題主要考查異面直線的定義、面面平行的判定、面面垂直的性質(zhì)及線面垂直的判定,屬于難題.空間直線、平面平行或垂直等位置關系命題的真假判斷,常采用畫圖(尤其是畫長方體)、現(xiàn)實實物判斷法(如墻角、桌面等)、排除篩選法等;另外,若原命題不太容易判斷真假,可以考慮它的逆否命題,判斷它的逆否命題真假,原命題與逆否命題等價.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的兩個焦點是F1(﹣2,0),F(xiàn)2(2,0),且橢圓C經(jīng)過點A(0, ).
(1)求橢圓C的標準方程;
(2)若過橢圓C的左焦點F1(﹣2,0)且斜率為1的直線l與橢圓C交于P、Q兩點,求線段PQ的長(提示:|PQ|= |x1﹣x2|).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合,

)當時,求

)若是只有一個元素的集合,其實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將參加夏令營的600名學生編號為:001,002,…,600,采用系統(tǒng)抽樣的方法抽取一個容量為50的樣本,且隨機抽得的編號為003.600名學生分住在3個營區(qū),001300住在第1營區(qū),301495住在第2營區(qū),496600住在第3營區(qū),3個營區(qū)被抽中的人數(shù)依次為(  )

A. 26,16,8 B. 25,16,9

C. 25,17,8 D. 24,17,9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義“三角戀寫法”為“三個人之間寫信,每人給另外兩人之一寫一封信,且任意兩個人不會彼此給對方寫信”,若五個人a,b,c,d,e中的每個人都恰給其余四人中的某一個人寫了一封信,則不出現(xiàn)“三角戀寫法”寫法的寫信情況的種數(shù)為(
A.704
B.864
C.1004
D.1014

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直四棱柱中,已知,

1)求證:;

2)設上一點,試確定的位置,使平面,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,底面△ABC是等邊三角形,側面AA1B1B為正方形,且AA1⊥平面ABC,D為線段AB上的一點.
(Ⅰ)若BC1∥平面A1CD,確定D的位置,并說明理由;
(Ⅱ)在(Ⅰ)的條件下,求二面角A1D﹣C﹣BC1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù))是偶函數(shù).

(1)求的值;

(2)若函數(shù)沒有零點,求的取值范圍;

(3)若函數(shù), 的最小值為0,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠商為了解用戶對其產(chǎn)品是否滿意,在使用產(chǎn)品的用戶中隨機調(diào)查了80人,結果如下表:

(1)根據(jù)上述,現(xiàn)用分層抽樣的方法抽取對產(chǎn)品滿意的用戶5人,在這5人中任選2人,求被選中的恰好是男、女用戶各1人的概率;
(2)有多大把握認為用戶對該產(chǎn)品是否滿意與用戶性別有關?請說明理由.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

注:

查看答案和解析>>

同步練習冊答案