如圖,已知PA⊥平面ABC,等腰直角三角形ABC中,AB=BC=2,AB⊥BC,AD⊥PB于D,AE⊥PC于E.
(Ⅰ)求證:PC⊥DE;
(Ⅱ)若直線AB與平面ADE所成角的正弦值為
2
3
,求PA的值.
考點:直線與平面所成的角
專題:綜合題,空間位置關(guān)系與距離,空間角
分析:(Ⅰ)先證明BC⊥平面PAB,可得BC⊥AD,證明AD⊥平面PBC,得PC⊥AD,再證明PC⊥平面ADE,即可證明PC⊥DE;
(Ⅱ)過點B作BE∥AP,則BZ⊥平面ABC,分別以BA,BC,BZ所在直線為x軸,y軸,z軸建立空間直角坐標(biāo)系,根據(jù)PC⊥平面ADE,可得
PC
=(-1,1,-a)
是平面ADE的一個法向量,從而向量
PC
AB
所成的角的余弦值的絕對值為
2
3
,即可求PA的值.
解答: (Ⅰ)證明:因為PA⊥平面ABC,
所以PA⊥BC,
又AB⊥BC,PA∩AB=A,
所以BC⊥平面PAB,
因為AD?平面PAB,
所以BC⊥AD.…(2分)
又AD⊥PB,BC∩PB=B,
所以AD⊥平面PBC,得PC⊥AD,…(4分)
又PC⊥AE,AD∩AE=A,
所以PC⊥平面ADE,
因為DE?平面ADE,
所以PC⊥DE…(6分)
(Ⅱ)解:過點B作BE∥AP,則BZ⊥平面ABC,如圖所示,分別以BA,BC,BZ所在直線為x軸,y軸,z軸建立空間直角坐標(biāo)系.   …(7分)
設(shè)PA=a,則A(2,0,0),C(0,2,0),P(2,0,a),
因為PC⊥平面ADE,所以
PC
=(-1,1,-a)
是平面ADE的一個法向量,
所以向量
PC
AB
所成的角的余弦值的絕對值為
2
3
,…(9分)
AB
=(-2,0,0)

|cos<
PC
AB
>|=|
PC
AB
|
PC
|•|
AB
|
|=|
(-2,2,-a)•(-2,0,0)
a2+8
|=
2
3
,解得a=1
所以PA=1…(12分)
點評:本題考查線面垂直的判定與性質(zhì),考查線面角,考查向量知識的運用,考查學(xué)生分析解決問題的能力,考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知一個算法的流程圖如圖,則輸出的結(jié)果S的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z滿足z(1+i)=1(其中i為虛數(shù)單位),則z的共軛復(fù)數(shù)
.
z
是( 。
A、
1
2
+
1
2
i
B、
1
2
-
1
2
i
C、-
1
2
+
1
2
i
D、-
1
2
-
1
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

運行如圖所示的程序框圖后輸出的結(jié)果是( 。
A、14B、16C、18D、64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果執(zhí)行如圖所示的框圖,輸入如下四個復(fù)數(shù):
(1)z=
1
2
i;(2)-
1
4
+
3
4
i;(3)
2
2
+
1
2
i;(4)z=
1
2
-
3
2
i
那么輸出的復(fù)數(shù)是( 。
A、(1)B、(2)
C、(3)D、(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等邊三角形ABC的邊長為3,點D、E分別是邊AB、AC上的點,且滿足
AD
DB
=
CE
EA
=
1
2
(如圖1).將△ADE沿DE折起到△A1DE的位置,使二面角A1-DE-B成直二面角,連結(jié)A1B、A1C(如圖1).
(Ⅰ)求證:A1D⊥平面BCED:
(Ⅱ)在線段BC上是否存在點P,使直線PA1與平面A1BD所成的角的正弦值為
3
2
?若存在,求出PB的長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解某校學(xué)生參加某項測試的情況,從該校學(xué)生中隨機抽取了6位同學(xué),這6位同學(xué)的成績(分?jǐn)?shù))如莖葉圖所示.
(1)求這6位同學(xué)成績的平均數(shù)和標(biāo)準(zhǔn)差;
(2)從這6位同學(xué)中隨機選出兩位同學(xué)來分析成績的分布情況,設(shè)ξ為這兩位同學(xué)中成績低于平均分的人數(shù),求ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,AB⊥AC,PA=PB=PC,D,E分別是AC,BC的中點,AB=2
3
,AC=2,PD=2
2
,Q為線段PE上不同于端點的一動點.
(Ⅰ)求證:AC⊥DQ;
(Ⅱ)若二面角B-AQ-E的大小為60°,求
QE
PE
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖的程序框圖輸出的T的值為( 。
A、4B、6C、8D、10

查看答案和解析>>

同步練習(xí)冊答案