【題目】某市政府為減輕汽車(chē)尾氣對(duì)大氣的污染,保衛(wèi)藍(lán)天,鼓勵(lì)廣大市民使用電動(dòng)交通工具出行,決定為電動(dòng)車(chē)(含電動(dòng)自行車(chē)和電動(dòng)汽車(chē))免費(fèi)提供電池檢測(cè)服務(wù).現(xiàn)從全市已掛牌照的電動(dòng)車(chē)中隨機(jī)抽取100輛委托專(zhuān)業(yè)機(jī)構(gòu)免費(fèi)為它們進(jìn)行電池性能檢測(cè),電池性能分為需要更換、尚能使用、較好、良好四個(gè)等級(jí),并分成電動(dòng)自行車(chē)和電動(dòng)汽車(chē)兩個(gè)群體分別進(jìn)行統(tǒng)計(jì),樣本分布如圖.

(1)采用分層抽樣的方法從電池性能較好的電動(dòng)車(chē)中隨機(jī)抽取9輛,再?gòu)倪@9輛中隨機(jī)抽取2輛,求至少有一輛為電動(dòng)汽車(chē)的概率;

(2)為進(jìn)一步提高市民對(duì)電動(dòng)車(chē)的使用熱情,市政府準(zhǔn)備為電動(dòng)車(chē)車(chē)主一次性發(fā)放補(bǔ)助,標(biāo)準(zhǔn)如下:①電動(dòng)自行車(chē)每輛補(bǔ)助300元;②電動(dòng)汽車(chē)每輛補(bǔ)助500元;③對(duì)電池需要更換的電動(dòng)車(chē)每輛額外補(bǔ)助400元.試求抽取的100輛電動(dòng)車(chē)執(zhí)行此方案的預(yù)算;并利用樣本估計(jì)總體,試估計(jì)市政府執(zhí)行此方案的預(yù)算.

【答案】(1);(2).

【解析】

1)根據(jù)頻數(shù)圖,利用分層抽樣得電動(dòng)自行車(chē)應(yīng)抽取4輛,電動(dòng)汽車(chē)應(yīng)抽取5輛,再利用古典概型和對(duì)立事件求得:至少有一輛為電動(dòng)汽車(chē)的概率為;

(2)由頻數(shù)圖,計(jì)算樣本中100輛電動(dòng)車(chē)共補(bǔ)助元,算出每輛電動(dòng)車(chē)平均需補(bǔ)助的錢(qián)乘以可得估計(jì)出市政府執(zhí)行此方案的預(yù)算。

(1)根據(jù)分層抽樣的原理,電動(dòng)自行車(chē)應(yīng)抽取(輛),

電動(dòng)汽車(chē)應(yīng)抽取(輛).

從9輛電動(dòng)車(chē)中抽取2輛,設(shè)電動(dòng)汽車(chē)和電動(dòng)自行車(chē)分別為,,,,,,

可得抽法總數(shù)為36種,

其中2輛均為電動(dòng)自行車(chē)的有,,,,,,共6種.

“設(shè)從這9輛中隨機(jī)抽取2輛,至少有一輛為電動(dòng)汽車(chē)”為事件

.

(2)由條件可知,這100輛電動(dòng)車(chē)中電動(dòng)自行車(chē)60輛,電動(dòng)汽車(chē)40輛,其中電池需要更換的電動(dòng)自行車(chē)8輛,電動(dòng)汽車(chē)1輛.根據(jù)補(bǔ)助方案可知,這100輛電動(dòng)車(chē)共補(bǔ)助

(元).

由樣本估計(jì)總體,市政府執(zhí)行此方案的預(yù)算大約需要

(元).即為所求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《孫子算經(jīng)》是中國(guó)古代重要的數(shù)學(xué)著作.其中的一道題“今有木,方三尺,高三尺,欲方五寸作枕一枚.問(wèn):得幾何?”意思是:“有一塊棱長(zhǎng)為3尺的正方體方木,要把它作成邊長(zhǎng)為5寸的正方體枕頭,可作多少個(gè)?”現(xiàn)有這樣的一個(gè)正方體木料,其外周已涂上油漆,則從切割后的正方體枕頭中任取一塊,恰有一面涂上油漆的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于數(shù)列,定義變換”:將數(shù)列變換成數(shù)列,其中,且,這種變換記作.繼續(xù)對(duì)數(shù)列進(jìn)行變換,得到數(shù)列,依此類(lèi)推,當(dāng)?shù)玫降臄?shù)列各項(xiàng)均為時(shí)變換結(jié)束.

(1)試問(wèn)經(jīng)過(guò)不斷的變換能否結(jié)束?若能,請(qǐng)依次寫(xiě)出經(jīng)過(guò)變換得到的各數(shù)列;若不能,說(shuō)明理由;

(2)求經(jīng)過(guò)有限次變換后能夠結(jié)束的充要條件;

(3)證明:一定能經(jīng)過(guò)有限次變換后結(jié)束.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,,,點(diǎn)F、E分別是BC、CD的中點(diǎn),現(xiàn)沿AE折起,使點(diǎn)D至點(diǎn)M的位置,且.

1)證明:平面MEF;

2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為,a為常數(shù))),過(guò)點(diǎn)、傾斜角為的直線的參數(shù)方程滿足,(為參數(shù)).

(1)求曲線C的普通方程和直線的參數(shù)方程;

(2)若直線與曲線C相交于A、B兩點(diǎn)(點(diǎn)P在A、B之間),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某房地產(chǎn)公司新建小區(qū)有A、B兩種戶型住宅,其中A戶型住宅每套面積為100平方米,B戶型住宅每套面積為80平方米,該公司準(zhǔn)備從兩種戶型住宅中各拿出12套銷(xiāo)售給內(nèi)部員工,表是這24套住宅每平方米的銷(xiāo)售價(jià)格:(單位:萬(wàn)元平方米):

房號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

A戶型

2.6

2.7

2.8

2.8

2.9

3.2

2.9

3.1

3.4

3.3

3.4

3.5

B戶型

3.6

3.7

3.7

3.9

3.8

3.9

4.2

4.1

4.1

4.2

4.3

4.5

1)根據(jù)表格數(shù)據(jù),完成下列莖葉圖,并分別求出A,B兩類(lèi)戶型住宅每平方米銷(xiāo)售價(jià)格的中位數(shù);

A戶型

B戶型

2.

3.

4.

2)該公司決定對(duì)上述24套住房通過(guò)抽簽方式銷(xiāo)售,購(gòu)房者根據(jù)自己的需求只能在其中一種戶型中通過(guò)抽簽方式隨機(jī)獲取房號(hào),每位購(gòu)房者只有一次抽簽機(jī)會(huì),小明是第一位抽簽的員工,經(jīng)測(cè)算其購(gòu)買(mǎi)能力最多為320萬(wàn)元,抽簽后所抽得住房?jī)r(jià)格在其購(gòu)買(mǎi)能力范圍內(nèi)則確定購(gòu)買(mǎi),否則,將放棄此次購(gòu)房資格,為了使其購(gòu)房成功的概率更大,他應(yīng)該選擇哪一種戶型抽簽?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形,平面,,的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)若,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中錯(cuò)誤的是( )

A.若命題為真命題,命題為假命題,則命題“”為真命題

B.命題“若,則”為真命題

C.命題“若,則”的否命題為“若,則

D.命題:,,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人某天的工作是駕車(chē)從地出發(fā),到兩地辦事,最后返回地,,三地之間各路段行駛時(shí)間及擁堵概率如下表

路段

正常行駛所用時(shí)間(小時(shí))

上午擁堵概率

下午擁堵概率

1

03

06

2

02

07

3

03

09

若在某路段遇到擁堵,則在該路段行駛時(shí)間需要延長(zhǎng)1小時(shí).

現(xiàn)有如下兩個(gè)方案:

方案甲:上午從地出發(fā)到地辦事然后到達(dá)地,下午從地辦事后返回地;

方案乙:上午從地出發(fā)到地辦事,下午從地出發(fā)到達(dá)地,辦完事后返回地.

1)若此人早上8點(diǎn)從地出發(fā),在各地辦事及午餐的累積時(shí)間為2小時(shí),且采用方案甲,求他當(dāng)日18點(diǎn)或18點(diǎn)之前能返回地的概率.

2)甲乙兩個(gè)方案中,哪個(gè)方案有利于辦完事后更早返回地?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案