【題目】某同學(xué)使用某品牌暖水瓶,其內(nèi)膽規(guī)格如圖所示.若水瓶內(nèi)膽壁厚不計(jì),且內(nèi)膽如圖分為①②③④四個部分,它們分別為一個半球、一個大圓柱、一個圓臺和一個小圓柱體.若其中圓臺部分的體積為,且水瓶灌滿水后蓋上瓶塞時水溢出.記蓋上瓶塞后,水瓶的最大盛水量為,
(1)求;
(2)該同學(xué)發(fā)現(xiàn):該品牌暖水瓶盛不同體積的熱水時,保溫效果不同.為了研究保溫效果最好時暖水瓶的盛水體積,做以下實(shí)驗(yàn):把盛有最大盛水量的水的暖水瓶倒出不同體積的水,并記錄水瓶內(nèi)不同體積水在不同時刻的水溫,發(fā)現(xiàn)水溫(單位:℃)與時刻滿足線性回歸方程,通過計(jì)算得到下表:
倒出體積 | 0 | 30 | 60 | 90 | 120 |
擬合結(jié)果 | |||||
倒出體積 | 150 | 180 | 210 | … | 450 |
擬合結(jié)果 | … |
注:表中倒出體積(單位:)是指從最大盛水量中倒出的那部分水的體積.其中:
令.對于數(shù)據(jù),可求得回歸直線為,對于數(shù)據(jù),可求得回歸直線為.
(。┲赋的實(shí)際意義,并求出回歸直線的方程(參考數(shù)據(jù):);
(ⅱ)若與的交點(diǎn)橫坐標(biāo)即為最佳倒出體積,請問保溫瓶約盛多少體積水時(盛水體積保留整數(shù),且取3.14)保溫效果最佳?
附:對于一組數(shù)據(jù),其回歸直線中的斜率和截距的最小二乘估計(jì)分別為.
【答案】(1);(2)(。的實(shí)際意義為倒出體積水時,暖水瓶內(nèi)水的降溫速率;回歸直線的方程為;(ⅱ).
【解析】
(1)根據(jù)題意,分析可得該暖水瓶的內(nèi)膽是由一個半球和一個大圓柱以及一個小圓柱組合而成,分別利用球的體積公式和柱體的體積公式求得相應(yīng)幾何體的體積,之后作和求得暖水瓶的最大盛水量,得到結(jié)果;
(2)(。└鶕(jù)題意,可得的實(shí)際意義為倒出體積水時,暖水瓶內(nèi)水的降溫速率;利用公式求得回歸直線的方程為;
(ⅱ)聯(lián)立方程組得,即為最佳倒出體積約為,根據(jù)條件,求得結(jié)果.
(1)依題意得,半球的半徑為,
體積為,
大圓柱體積,
小圓柱體積,
所以蓋上瓶塞后,水瓶的最大盛水量為.
(2)(ⅰ)的實(shí)際意義為倒出體積水時,暖水瓶內(nèi)水的降溫速率;
越小,降溫速率越小,保溫效果越好;越大,降溫速率越大,保溫效果越差.
因?yàn)?/span>,對于回歸直線,
因?yàn)?/span>,
,
所以,
,
所以回歸直線的方程為.
(ⅱ)聯(lián)立得,
所以保溫瓶最佳倒出體積約為,
保溫瓶盛水體積約為,
所以保溫瓶盛水體積約為時保溫效果最佳.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花卉企業(yè)引進(jìn)了數(shù)百種不同品種的康乃馨,通過試驗(yàn)田培育,得到了這些康乃馨種子在當(dāng)?shù)丨h(huán)境下的發(fā)芽率,并按發(fā)芽率分為組:、、、加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.企業(yè)對康乃馨的種子進(jìn)行分級,將發(fā)芽率不低于的種子定為“級”,發(fā)芽率低于但不低于的種子定為“級”,發(fā)芽率低于的種子定為“級”.
(Ⅰ)現(xiàn)從這些康乃馨種子中隨機(jī)抽取一種,估計(jì)該種子不是“級”種子的概率;
(Ⅱ)該花卉企業(yè)銷售花種,且每份“級”、“級”、“級”康乃馨種子的售價分別為元、元、元.某人在市場上隨機(jī)購買了該企業(yè)銷售的康乃馨種子兩份,共花費(fèi)元,以頻率為概率,求的分布列和數(shù)學(xué)期望;
(Ⅲ)企業(yè)改進(jìn)了花卉培育技術(shù),使得每種康乃馨種子的發(fā)芽率提高到原來的倍,那么對于這些康乃馨的種子,與舊的發(fā)芽率數(shù)據(jù)的方差相比,技術(shù)改進(jìn)后發(fā)芽率數(shù)據(jù)的方差是否發(fā)生變化?若發(fā)生變化,是變大了還是變小了?(結(jié)論不需要證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若拋物線的焦點(diǎn)為,是坐標(biāo)原點(diǎn),為拋物線上的一點(diǎn),向量與軸正方向的夾角為60°,且的面積為.
(1)求拋物線的方程;
(2)若拋物線的準(zhǔn)線與軸交于點(diǎn),點(diǎn)在拋物線上,求當(dāng)取得最大值時,直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)判斷函數(shù)在區(qū)間上零點(diǎn)的個數(shù);
(Ⅱ)設(shè)函數(shù)在區(qū)間上的極值點(diǎn)從小到大分別為.證明:
(i);
(ii)對一切成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從盛滿2升純酒精的容器里倒出1升純酒精,然后填滿水,再倒出1升混合溶液后又用水填滿,以此繼續(xù)下去,則至少應(yīng)倒 次后才能使純酒精體積與總?cè)芤旱捏w積之比低于10%.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為,為過焦點(diǎn)且垂直于軸的拋物線的弦,已知以為直徑的圓經(jīng)過點(diǎn).
(1)求的值及該圓的方程;
(2)設(shè)為上任意一點(diǎn),過點(diǎn)作的切線,切點(diǎn)為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn),,拋物線的焦點(diǎn)為線段中點(diǎn).
(1)求拋物線的方程;
(2)過點(diǎn)的直線交拋物線于兩點(diǎn),,過點(diǎn)作拋物線的切線,為切線上的點(diǎn),且軸,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019冠狀病毒病(CoronaVirus Disease2019(COVID-19))是由新型冠狀病毒(2019-nCoV)引發(fā)的疾病,目前全球感染者以百萬計(jì),我國在黨中央、國務(wù)院、中央軍委的堅(jiān)強(qiáng)領(lǐng)導(dǎo)下,已經(jīng)率先控制住疫情,但目前疫情防控形勢依然嚴(yán)峻,湖北省中小學(xué)依然延期開學(xué),所有學(xué)生按照停課不停學(xué)的要求,居家學(xué)習(xí).小李同學(xué)在居家學(xué)習(xí)期間,從網(wǎng)上購買了一套高考數(shù)學(xué)沖刺模擬試卷,快遞員計(jì)劃在下午4:00~5:00之間送貨到小區(qū)門口的快遞柜中,小李同學(xué)父親參加防疫志愿服務(wù),按規(guī)定,他換班回家的時間在下午4:30~5:00,則小李父親收到試卷無需等待的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某景點(diǎn)共有999級臺階,寓意長長久久.游客甲上臺階時,可以一步走一個臺階,也可以一步走兩個臺階,無其它可能.若甲每步上一個臺階的概率為,每步上兩個臺階的概率也為.為了簡便描述問題,我們約定,甲從0級臺階開始向上走,一步走一個臺階記1分,一步走兩個臺階記2分,記甲登上第個臺階的概率為,其中,且.
(1)甲走3步時所得分?jǐn)?shù)為,求的分布列和數(shù)學(xué)期望;
(2)證明:當(dāng),且時,數(shù)列是等比數(shù)列,并求甲登上第100級臺階的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com