【題目】設(shè)函數(shù)f(x)=x3+ax2+bx+1的導(dǎo)數(shù)滿足,,其中常數(shù)a,b∈R.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)設(shè),求函數(shù)g(x)的極值.
【答案】(1)6x+2y-1=0;(2)g(x)在x=0處取得極小值g(0)=-3,在x=3處取得極大值g(3)=15e-3.
【解析】試題分析:(Ⅰ)由已知條件解出a,b,得到函數(shù)f(x)的表達(dá)式,切線方程的斜率即為該點(diǎn)導(dǎo)數(shù)值,由點(diǎn)斜式即可寫出切線方程;
(Ⅱ)求g(x)導(dǎo)函數(shù)g′(x)=(-3x2+9x)e-x,可得出單調(diào)區(qū)間,從而得到極值.
試題解析:(1)∵f(x)=x3+ax2+bx+1,∴f′(x)=3x2+2ax+b,
則解得
∴f(x)=x3-x2-3x+1,∴f(1)=-,f′(1)=-3,
∴y=f(x)在(1,f(1))處的切線方程為
y-=-3(x-1),即6x+2y-1=0;
(2)由(1)知g(x)=(3x2-3x-3)e-x,
∴g′(x)=(-3x2+9x)e-x,
令g′(x)=0,即(-3x2+9x)e-x=0,得x=0或x=3,
當(dāng)x∈(-∞,0)時(shí),g′(x)<0,
故g(x)在(-∞,0)上單調(diào)遞減.
當(dāng)x∈(0,3)時(shí),g′(x)>0,故g(x)在(0,3)上單調(diào)遞增.
當(dāng)x∈(3,+∞)時(shí),g′(x)<0,
故g(x)在(3,+∞)上單調(diào)遞減.
從而函數(shù)g(x)在x=0處取得極小值g(0)=-3,
在x=3處取得極大值g(3)=15e-3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓離心率為,,是橢圓的左、右焦點(diǎn),以為圓心,為半徑的圓和以為圓心、為半徑的圓的交點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)設(shè)橢圓的下頂點(diǎn)為,直線與橢圓交于兩個(gè)不同的點(diǎn),是否存在實(shí)數(shù)使得以為鄰邊的平行四邊形為菱形?若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線關(guān)于軸對(duì)稱,頂點(diǎn)在坐標(biāo)原點(diǎn),直線經(jīng)過(guò)拋物線的焦點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若不經(jīng)過(guò)坐標(biāo)原點(diǎn)的直線與拋物線相交于不同的兩點(diǎn), ,且滿足,證明直線過(guò)軸上一定點(diǎn),并求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義域?yàn)?/span>R的偶函數(shù),f(-1)=3,且當(dāng)x≥0時(shí),f(x)=2x+x+c(c是常數(shù)),則不等式f(x-1)<6的解集是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,既為偶函數(shù),又在(0,+∞)上為增函數(shù)的是( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi)從點(diǎn)P1(0,0)作x軸的垂線交曲線y=ex于點(diǎn)Q1(0,1),曲線在Q1點(diǎn)處的切線與x軸交于點(diǎn)P2.再?gòu)?/span>P2作x軸的垂線交曲線于點(diǎn)Q2,依次重復(fù)上述過(guò)程得到一系列點(diǎn):P1,Q1;P2,Q2;…;Pn,Qn,記點(diǎn)的坐標(biāo)為(,0)(k=1,2,…,n).
(1)試求與的關(guān)系(k=2,…,n);
(2)求|P1Q1|+|P2Q2|+|P3Q3|+…+|PnQn|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的最大值與最小值之和為a2+a+1(a>1).
(1)求a的值;
(2)判斷函數(shù)g(x)=f(x)-3在[1,2]的零點(diǎn)的個(gè)數(shù),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司計(jì)劃購(gòu)買2臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購(gòu)進(jìn)機(jī)器時(shí),可以額外購(gòu)買這種零件作為備件,每個(gè)200元.在機(jī)器使用期間,如果備件不足再購(gòu)買,則每個(gè)500元.現(xiàn)需決策在購(gòu)買機(jī)器時(shí)應(yīng)同時(shí)購(gòu)買幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得如圖柱狀圖:
以這100臺(tái)機(jī)器更換的易損零件數(shù)的頻率代替1臺(tái)機(jī)器更換的易損零件數(shù)發(fā)生的概率,記X表示2臺(tái)機(jī)器三年內(nèi)共需更換的易損零件數(shù),n表示購(gòu)買2臺(tái)機(jī)器的同時(shí)購(gòu)買的易損零件數(shù).
(1)求X的分布列;
(2)若要求P(X≤n)≥0.5,確定n的最小值;
(3)以購(gòu)買易損零件所需費(fèi)用的期望值為決策依據(jù),在n=19與n=20之中選其一,應(yīng)選用哪個(gè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)解不等式;
(2)若函數(shù),其中為奇函數(shù),為偶函數(shù),若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com